高中数学教案设计范例【精简6篇】

时间:2013-07-09 07:21:32
染雾
分享
WORD下载 PDF下载 投诉

高中数学教案设计范例 篇一

教案名称:平面向量的基本概念与性质

适用年级:高中数学

教学目标:

1. 了解平面向量的基本概念,包括向量的定义、模、方向和方向角。

2. 掌握平面向量的加法、减法、数乘和数量积的性质。

3. 能够解决与平面向量相关的简单几何问题。

教学重点:

1. 平面向量的定义和基本性质。

2. 平面向量的加法和减法。

3. 平面向量的数乘和数量积。

教学难点:

1. 平面向量的数量积的概念和计算方法。

2. 运用平面向量解决几何问题。

教学准备:

1. 教师准备:教案、黑板、彩色粉笔、相关练习题。

2. 学生准备:教材、笔记本、笔。

教学过程:

1. 导入

教师通过提问或举例,引导学生回忆和复习平面向量的基本概念,如向量的定义、模、方向和方向角。

2. 讲解

教师讲解平面向量的加法、减法、数乘和数量积的性质,结合具体的例子进行说明,并逐步推导相关公式和定理。

3. 操练

教师出示相关练习题,让学生进行练习和解答,帮助学生巩固所学的知识和技能。教师可以适时给予指导和提示,引导学生正确解题。

4. 拓展

教师提供一些拓展题目,让学生进行思考和探究,进一步拓展他们的数学思维和解题能力。

5. 归纳

教师与学生一起归纳总结平面向量的基本概念和性质,强调重点和难点,并给出相关的学习方法和技巧。

6. 练习

教师布置一些相关的练习题,让学生进行自主练习和巩固。学生可以自行查找资料和参考书籍,进行自主学习和解题。

7. 讲评

教师对学生的练习情况进行讲评,给予评价和指导,帮助学生发现和纠正错误,进一步提高他们的学习水平。

8. 总结

教师和学生一起进行总结,回顾本节课的教学内容和学习收获,明确下一节课的学习目标和安排。

教学反思:

本节课教学过程较为顺利,学生对平面向量的基本概念和性质有了更深入的了解。通过讲解、练习和归纳,学生的数学思维和解题能力有了一定的提高。但在布置练习题和讲评环节,应更加注重学生的个体差异,给予不同程度的指导和帮助,以适应不同学生的学习需求。同时,在操练和拓展环节,可以增加一些趣味性和挑战性的题目,激发学生的学习兴趣和积极性。

高中数学教案设计范例 篇三

一、复习内容

平面向量的概念及运算法则

二、复习重点

向量的概念及运算法则的运用及其用向量知识,实现几何与代数之间的等价转化。

三、具体教学过程

1.学生准备课前预习回家做作业。其具体步骤是:相应知识的系统梳理;典型例题的摘录;搜集平时作业,测验作业中存在的典型错误;提出针性训练的练习题;准备思考题,以及家庭作业。学生的准备可以从中选择一项,学有余力的同学可以多选。

2.学生可以分为出题组、答题组和归纳组(每组3~4人),三个小组又可构成一个大的探究组,各小组的角色在其过程中可以互换;教师从旁引导,控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑,最后选出具有代表性的题目和表达最完整的归纳展示给学生。

出题组:在教师的引导下,确立出题意图后,可以自编或在课本、资料中寻找适当的例题。

答题组:迅速给出题目答案或解题思路步骤(由学生自己讲解),同时确立该题所考察的知识点和方法,并互相讨论解题过程中的易错点和容易忽视的问题。

归纳组:对照相应的问题,归纳出解决问题的关键和方法及其需要注意的事项。并以书面的形式给出,可充分利用投影的方式展示给学生。

3.教学中教师按上述环节顺序,让每一环节准备相同内容,学生自己选择一人担任主讲,其余同学组成评议组,主讲讲解完后,由评议组补充、完善或评价、矫正……。

4.教师控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑。

5.在学生自己完成这一复习环节后,师生共同完成教师的精选题例题的讲解,同样采用启发讨论式,尽可能地让学生自己完成问题的解答。

6.课尾教师进行点评、归纳、小结(由学生自己完成),并评选本课“主讲明星”与“评议”。

四、案例分析及其反思

1.让学生走上讲台,既为学生提供展示才华的舞台,满足其表现欲,尝试成功感,又让学生亲历知识掌握的构建过程。

2.由于要自己完成课前的准备作业和讲解内容,迫使学生进行章节的全面复习,对知识进行系统整理,这一复习环节,却真正达到了学生自觉地学习,使学生由被动学习转化为主动学习,提高学习效率。

3.组织这样的课堂教学流程,培养了学生口才、组织能力、逻辑思维能力、应变能力、心理承受能力等等,促使学生的个性达到良性的发展。

4.由于改变了课堂的传统座位排法,学生得到了互相帮助的机会,学习较差的学生能直接得到学有余力的同学的帮助和指导,更容易掌握和理解所学的知识,调动兴趣,提高了学习能力。互帮互学为学生营造了一个轻松、愉快的学习氛围。打破教师出题,学生解答的单调教学模式。通过学生自己变式,充分体现学生的主体性,使他们对一类问题有根本性地掌握,起到以点带面的效果。通过以组题的形式让学生通过有目的的联想,探索习题之间的内在联系,明确问题产生的背景,领会问题的实质,进而找到相应的解题策略,培养学生的思维的灵活性和广阔性,进一步完善、深化学生的认知结构。

5.教学模式恰当,引人入胜

“探究讨论式”是一种常用的教学方法。然而,本课探索“向量的应用”却颇有难度,尤其是几何与代数之间的问题转化。为了突破这一难点,首先复习旧知识,预备铺垫,接着设计简单的几何图形中的代数求值问题。教师在思想方法上的点拔,思维层次上的递进,让学生分享自己成果的乐趣,体现了“学生是数学学习的主人,教师是数学学习的组织者、引领者与合作者。”的教学理念。整个教学设计,思路清楚,层次转换自然,点拨及时,自然流畅,引人入胜。

6.体现先进理念,合作探索

建构主义认为:学生的学习不是被动的接受,而是一种主动的学习,一种知识的重组或重新建构的过程。因此,学习方式的转变,对学生的学习至关重要,也是二期课改成败的要害。本课注重学生学习方式的转变,教者适时点拨,发现问题,培养探索精神。从轻易混淆的性质入手,让学生发现问题,出现迷惑,接着,对向量平行充要条件的研究,培养了学生思维的深刻性,通过概念的

辨析,使学生对向量有了更深的理解,此时推出综合应用题,过渡自然,符合认知规律。同学探究,思维得到进一步的升华,攻克难点,培养了合作精神。通过展示研究成果,让学生感到爱好盎然而布满探索求知的愿望,学生的主体地位得到了淋漓尽致的发挥。体验成功的喜悦,分享快乐,提高了学习的积极性。

熟知,课堂教学“以教师为主导,以学生为主体”这句话好说难做。如何落在实处,本课做了有益的尝试。案例的设计,具有时代气息,以问题为先导,直接引导学生进入思考的境界。教案的设计说明,体现了教者“以学生发展为本的教学理念”。

《数学课程标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能……”。这就是一次很好的机会,教师要鼓励、引导学生敢于质疑、敢于实践,培养学生主动探究问题的能力,转变学生学习方式,即变单一的传授方式为学生自主体验、探究等学习方式。

复习课上都有一个突出的矛盾,那就是时间太紧,既要处理足量的题目,又要充分展示学生的思维过程,二者似乎是很难兼顾。教师可采用“焦点访谈”法较好地解决这个问题,如:例2和例2的变式1的探究,因题目是“入口宽,上手易”,但在连续探究的过程中,在两种方法会得出两个相反的答案这一点上搁浅受阻(这一点被称为“焦点”,其余的则被称为“外围”)。这里教师不必在外围处花精力去进行浅表性的启发诱导,好钢要用在刀刃上,而要在焦点处发动学生探寻突破口,通过交流“访谈”,集中学生的智慧,让学生的思维在关键处闪光,能力在要害处增长,弱点在隐蔽处暴露,意志在细微处磨砺。

高中数学教案设计范例 篇四

【教学目标】

1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

2.能根据几何结构特征对空间物体进行分类。

3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

【教学重难点】

教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

教学难点:柱、锥、台、球的结构特征的概括。

【教学过程】

1.情景导入

教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

2.展示目标、检查预习

3.合作探究、交流展示

(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?

(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。有两个面互相平行;其余各面都是平行四边形;每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

(3)提出问题:请列举身边的棱柱并对它们进行分类

(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)

(2)棱柱的任何两个平面都可以作为棱柱的底面吗?

(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

(5)绕直角三角形某一边的几何体一定是圆锥吗?

5.典型例题

例:判断下列语句是否正确。

⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。

⑵有两个面互相平行,其余各面都是梯形,则此几何体是棱柱。

答案AB

6.课堂检测:

课本P8,习题1.1A组第1题。

7.归纳整理

由学生整理学习了哪些内容

高中数学教案设计范例 篇五

一、教学目标

1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。

2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。

二、教学重点:画出简单几何体、简单组合体的三视图;

难点:识别三视图所表示的空间几何体。

三、学法指导:观察、动手实践、讨论、类比。

四、教学过程

(一)创设情景,揭开课题

展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。

(二)讲授新课

1、中心投影与平行投影:

中心投影:光由一点向外散射形成的投影;

平行投影:在一束平行光线照射下形成的投影。

正投影:在平行投影中,投影线正对着投影面。

2、三视图:

正视图:光线从几何体的前面向后面正投影,得到的投影图;

侧视图:光线从几何体的左面向右面正投影,得到的投影图;

俯视图:光线从几何体的上面向下面正投影,得到的投影图。

三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

三视图的画法规则:长对正,高平齐,宽相等。

长对正:正视图与俯视图的长相等,且相互对正;

高平齐:正视图与侧视图的高度相等,且相互对齐;

宽相等:俯视图与侧视图的宽度相等。

3、画长方体的三视图:

正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。

长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。

4、画圆柱、圆锥的三视图:

5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。

(三)巩固练习

课本P15练习1、2;P20习题1.2[A组]2。

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)布置作业

课本P20习题1.2[A组]1。

高中数学教案设计范例 篇六

1.课题

填写课题名称(高中代数类课题)

2.教学目标

(1)知识与技能:

通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;

(2)过程与方法:

通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力;

(3)情感态度与价值观:

通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

3.教学重难点

(1)教学重点:本节课的知识重点

(2)教学难点:易错点、难以理解的知识点

4.教学方法(一般从中选择3个就可以了)

(1)讨论法

(2)情景教学法

(3)问答法

(4)发现法

(5)讲授法

5.教学过程

(1)导入

简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

(2)新授课程(一般分为三个小步骤)

①简单讲解本节课基础知识点(例:奇函数的定义)。

②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。

③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。

(在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。)

(3)课堂小结

教师提问,学生回答本节课的收获。

(4)作业提高

布置作业(尽量与实际生活相联系,有所创新)。

高中数学教案设计范例【精简6篇】

手机扫码分享

Top