小学数学教案《解方程》【精彩6篇】

时间:2016-01-06 08:38:26
染雾
分享
WORD下载 PDF下载 投诉

小学数学教案《解方程》 篇一

解方程是数学中一项重要的基础知识,也是小学数学教学中的重点内容。通过教授解方程的方法和技巧,能够帮助学生提高逻辑思维能力、培养问题解决能力。本节课我们将教授学生如何解一元一次方程。

首先,我们需要让学生了解什么是一元一次方程。一元一次方程是指只含有一个未知数的一次方程,例如:2x + 3 = 7。这里的未知数是x,系数是2,常数是3和7。我们的目标是找到未知数的值。

接下来,我们将介绍解一元一次方程的基本方法。首先,我们可以通过逆运算的方式,将方程中的各个项进行变换,使得未知数单独出现在一边,常数单独出现在另一边。例如,对于方程2x + 3 = 7,我们可以先将3移到等号的另一边,得到2x = 7 - 3,即2x = 4。接着,我们再通过除以系数的方式,将未知数的系数化简为1,得到x = 4 / 2,即x = 2。这样,我们就找到了方程的解。

在教学过程中,我们可以通过举例来帮助学生理解解一元一次方程的过程。例如,我们可以给学生出一些简单的方程题目,让他们通过变换和化简来求解。我们可以逐步引导学生,先让他们自己尝试解题,然后再给予一些提示和指导。通过这样的练习,学生能够更好地掌握解一元一次方程的方法和技巧。

除了基本的一元一次方程,我们还可以通过一些拓展题目来提高学生的解题能力。例如,我们可以给学生出一些带有分数或小数的方程,让他们通过变换和化简来求解。这样的练习能够帮助学生更好地理解解一元一次方程的原理和应用。

总之,解方程是小学数学教学中的重点内容,通过教授解一元一次方程的方法和技巧,能够培养学生的逻辑思维能力和问题解决能力。在教学过程中,我们可以通过举例和练习来帮助学生更好地掌握解方程的方法和技巧。通过这样的教学,学生能够提高解题能力,为以后学习更高级的数学知识打下坚实的基础。

小学数学教案《解方程》 篇二

解方程是小学数学中的一项重要内容,也是培养学生逻辑思维和问题解决能力的重要手段。本节课我们将教授学生如何解一元一次方程,并进一步拓展到一元二次方程。

首先,我们回顾一元一次方程的解法。一元一次方程是只含有一个未知数的一次方程,我们可以通过逆运算的方式,将方程进行变换和化简,最终求得未知数的值。我们可以通过举例和练习,让学生熟悉解一元一次方程的基本方法和技巧。

接下来,我们将引入一元二次方程的解法。一元二次方程是含有一个未知数的二次方程,例如:x^2 + 5x + 6 = 0。在解一元二次方程时,我们可以使用因式分解、配方法或求根公式等不同的方法。我们可以通过举例和练习,让学生掌握解一元二次方程的不同方法和技巧。

在教学过程中,我们可以通过一些实际问题来引导学生解方程。例如,我们可以给学生出一些应用题,让他们通过建立方程来解决问题。这样的练习能够帮助学生将解方程的知识应用到实际生活中,培养他们的问题解决能力和创新思维。

除了一元一次方程和一元二次方程,我们还可以通过引入更高级的方程,如多元方程和高次方程,来拓展学生的解题能力。这样的拓展内容能够培养学生的数学思维和创造能力,为他们今后学习更高级的数学知识打下坚实的基础。

总之,解方程是小学数学教学中的重点内容,通过教授解一元一次方程和一元二次方程的方法和技巧,我们能够培养学生的逻辑思维能力和问题解决能力。在教学过程中,我们可以通过举例和练习来帮助学生更好地掌握解方程的方法和技巧,并通过引入更高级的方程来拓展学生的解题能力。通过这样的教学,学生能够提高解题能力,为以后学习更高级的数学知识打下坚实的基础。

小学数学教案《解方程》 篇三

  一、设计理念:

  随着学生学习知识的迁移,让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,既巩固了小学基础知识,又为初中教学打下坚实的基础。

  二、教学目标:

  知识与技能:让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,运用相关规律,熟练的进行解方程计算。

  过程与方法:让学生通过体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。

  情感态度与价值观:运用“勾漏”双向四步教学法,适当创设教学情境,激发学生的学习兴趣。

  三、教学重、难点:

  教学重点:让学生在让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,掌握各类解方程的一些规律,运用相关规律,熟练的进行解方程计算。

  教学难点:让学生体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。

  四、教学方法:

  “勾漏”双向四步教学法;观察法、比较法、归纳法。

  五、教学准备:

  教学课件

  六、教学过程

  (一)、勾人入境:

  同学们,利用等式的性质我们学会了解方程,其实上,熟练后,我们可以不用写得那么麻烦,三言两语就可以轻松地解方程了啊!想学吗?

  (二)、漏知互学:

  我们先按运算符号把方程分成四大块:一、加法方程,二、乘法方程;三、减法方程;四、除法方程

  先来看第一大块的加法方程

  186+x=200

  用等式的性质这样解:

  186+x=200

  解:x+186—186=200—186

  X=14

  熟练后可以这样解:

  186+x=200

  解:x=200—186

  X=14

  有什么规律呢?先看符号(+、-符号相反)再看数字(数字顺序也相反),那合起来说就是:加法方程,数符相反。有趣吗?

  现在我们再看第二大块的乘法方程

  36×x=108

  用等式的性质这样解:

  36×x=108

  解:X×36÷36=108÷36

  X=3

  熟练后可以这样解:

  36×x=108

  解:X=108÷36

  X=3

  师:他们又有什么规律呢?(课件展示)哦真聪明!乘法方程与加法方程的规律一样,数字顺序和运算符号都相反了,所以我们把乘法方程与加法方程合在一起称为:乘加方程,数符相反。明白了吗?记住了吗?

  现在我们再来看第三大块,减法方程:

  X—36=12

  用等式的性质这样解:

  X—36=12

  解:X—36+36=12+36

  X=48

  熟练后可以这样解:

  X—36=12

  解:X=12+36

  X=48

  那么它们又有什么规律呢?先看未知数x都在减号前,接下来的运算符号都用加法,那么是不是所有的减法方程都是用加法呢?别急,请看:

  108—X=60

  用等式的性质可以这样解:

  108—X=60

  解:108—X+X=60+X

  108 =60+X

  60+X =108

  X+60-60 =108-60

  X=48

  熟练后可以这样解:

  108—X=60

  解:X=108—60

  X=48

  同学们,比较一下,这两题减法方程与上面两题有什么不同呢?对,未知数x都在减号后面,运算符号都是用减法,那么我们就可以把这两张种减法方程合并起来说:减法方程,前加后减。未知数x在减号前用加法,未知数x在减号后,用减法。

  接下来我们再来学习第四块,除法方程:

  X÷12=5

  用等式的性质可以这样解:

  X÷12=5

  解:X÷12×12=5×12

  X=60

  熟练后可以这样解:

  X÷12=5

  解:X=5×12

  X=60

  同学们,你发现了什么?对,眼睛真厉害!未知数x在除号前,解完这道题,谁发现,有没有似曾相识的感觉:与减法一样,

  1、未知数X在除号前面,

  2、都用乘法,

  3、数字没有相反。

  怎么办,对,先算完另外一种情况(X在除号后的)再说,那么请开始吧。

  48÷X=3

  用等式的性质可以这样解:熟练后可以这样解:

  48÷X=3 48÷X=3

  解:48÷X×X=3×X解:X=48÷3

  48=3×X X=16

  3×X=48

  X=48÷3

  X=16

  仔细观察比较,你发现了什么?解除法方程的规律你找到了吗?

  1、未知数X在除号后面,

  2、都用除法,

  3、数字没有相反。

  以上说明在除号前后的计算方法不一样,那么它的规律要根据X在除号前后来判断,X在除号前用乘法,X在除号后用除法,从而得出他的规律是除法方程,前乘后除,它和减法有类似感。

  (三)、流程对测:

  小组内各出加减乘除的方程各一条,然后交换计算,看谁算得又快又准确。

  小组开始探究,教师巡逻指导

  (四)、结课拓展:请同学们说说这节课你学到了什么?

小学数学教案《解方程》 篇四

  知识网络

  列方程解应用题最关键是前两步:设未知数和列方程。有的同学说解方程的部分不是篇幅很长么,为什么不是关键部分呢?其实,只要仔细观察一下,就会发现,虽然篇幅很长,但只要注意到符号变化、分配律等基本运算技巧,解的过程是较容易掌握的。相反,前两步篇幅虽然短,但列方程解应用题的精华和难点却大部分集中在这里,需要用以体会。

  一般地,设什么量为未知数,最简单明了的想法是设所求为x(复杂的题目有时要采取迂回战术,间接地设未知数),当所求的数较多时,把这些所求的数量用一个或尽量少的未知数表达出来,也是很重要的。

  设完未知数,就要找等量关系,来帮助列出方程。这时需要认真读题,因为许多等量关系是隐藏在字里行间的。中文有很多字、词、句表达相等的意思,如相等、是、比多、比少、是的几倍、的总和是、与的差是等等,根据这些字句的含义,再加上其中的量用未知数表达出来,就能列出方程。

  重点难点

  列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值,列方程解应用题的优点在于可以使未知数直接参加运算。解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程。而找出等量关系又在于熟练运用数量之间的各种已知条件。掌握了这两点就能正确地列出方程。

  学法指导

  (1)列方程解应用题的一般步骤是:

  1)弄清题意,找出已知条件和所求问题;

  2)依题意确定等量关系,设未知数x;

  3)根据等量关系列出方程;

  4)解方程;

  5)检验,写出答案。

  (2)初学列方程解应用题,要养成多角度审视问题的习惯,增强一题多解的自觉性,逐步提高分析问题、解决问题的能力。

  (3)对于变量较多并且变量关系又容易确定的问题,用方程组求解,过程更清晰。

  经典例题

  例1 某县农机厂金工车间有77个工人。已知每个工人平均每天加工甲种零件5个或乙种零件4个或丙种零件3个。但加工3个甲种零件、1个乙种零件和9个丙种零件才恰好配成一套。问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套。

  思路剖析

  如果直接设生产甲、乙、丙三种零件的人数分别为x人、y人、z人,根据共有77人的条件可以列出方程x+y+z=77,但解起来比较麻烦 如果仔细分析题意,会出现除了上面提到的加工甲、乙、丙三种零件的人数为未知数外,还有甲、乙、丙三种零件各自的总件数也未知。而题目中又有关于甲、乙、丙三种零件之间装配时的内在联系,这个内在联系可以用比例关系表示,而乙种零件件数又在中间起媒介作用。所以如用间接未知数,设已种零件总数为x个,为了配套,甲种、丙种零件件数总数分别为3x个和9x个,再根据生产某种零件人数=生产这种零件的个数工人劳动效率,可以分别求出生产甲、乙、丙种零件需安排的人数,从而找出等量关系,即按均衡生产推算的总人数,列出方程 解 答

  设加工乙种零件x个,则加工甲种零件3x个,加工丙种零件9x个。

  答:应安排加工甲、乙、丙三种零件工人人数分别为12人、5人和60人。

  例2 牧场上长满牧草,每天牧草都匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天,问可供25头牛吃几天?

  思路剖析

  这是以前接触过的牛吃草问题,它的算术解法步骤较多,这里用列方程的方法来解决。

  设供25头牛可吃x天。

  本题的等量关系比较隐蔽,读一下问题:每天牧草都匀速生长,草生长的速度是固定的,这就可以发掘出等量关系,如从供10头牛吃20天表达出生长速度,再从供15头牛吃10天表达出生长速度,这两个速度应该一样,就是一种相等关系;另外,最开始草场的草应该是固定的,也可以发掘出等量关系。

  解 答

  设供25头牛可吃x天。

  由:草的总量=每头牛每天吃的草头数天数

  =原有的草+新生长的草

  原有的草=每头牛每天吃的草头数天数-新生长的草

  新生长的草=草的生长速度天数

  考虑已知条件,有

  原有的草=每头牛每天吃的草1020-草的生长速度20

  原有的草=每头牛每天吃的草1510-草的生长速度10

  所以:原有的草=每头牛每天吃的草200-草的生长速度20

  原有的草=每头牛每天吃的草150-草的生长速度10

  即:每头牛每天吃的草200-草的生长速度20

  =每头牛每天吃的草150-草的生长速度10

  每头牛每天吃的草200草的生长速度20+每头牛每天吃的草150-草的生长速度10

  每头牛每天吃的草200-每头牛每天吃的草150

  =草的生长速度20-草的生长速度10

  每头牛每天吃的草(200-150)=草的生长速度(20-10)

  所以:每头牛每天吃的草50=草的生长速度10

  每头牛每天吃的草5=草的生长速度

  因此,设每头牛每天吃的草为1,则草的生长速度为5。

  由:原有的草=每头牛每天吃的草25x-草的生长速度x

  原有的草=每头牛每天吃的草1020-草的生长速度20

  有:每头牛每天吃的草25x-草的生长速度x

  =每头牛每天吃的草1020-草的生长速度20

  所以:125x-5x=11020-520

  解这个方程

  25x-5x=1020-520

  20x=100

  x=5(天)

  答:可供25头牛吃5天。

  例3 某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?

  解 答

  设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程

  解法一:用直接设元法。

  80x-40=(30x+40)2

  80x-40=60x+80

  20x=120

  x=6(座)

  解法二:用间接设元法。

  设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。

  (x-40)30=(2x+40)80

  (x-40)80=(2x+40)30

  80x-3200=60x+1200

  20x=4400

  x=220(米3)

  由灰砖有220米3,推知修建住宅(220-40)30=6(座)。

  同理,也可设有红砖x米3。留给同学们练习。

  答:计划修建住宅6座。

  例4 两个数的和是100,差是8,求这两个数。

  思路剖析

  这道题有两个数均为未知数,我们可以设其中一个数为x,那么另一个数可以用100-x或x+8来表示。

  解 答

  解法一:设较小的数为x,那么较大的数为x+8,根据题意它们的和是100,可以得到:

  x+8+x=100

  解这个方程:2x=100-8

  所以 x=46

  所以 较大的数是 46+8=54

  也可以设较小的数为x,较大的数为100-x,根据它们的差是8列方程得:

  100-x-x=8

  所以 x=46

  所以 较大的数为100-46=54

  答:这两个数是46与54。

小学数学教案《解方程》 篇五

  设计说明

  本节课的教学任务是使学生了解等式性质(二),并会用这个性质解方程。由于学生在探究等式性质(一)时已经具备了一定的学习经验,因此本节课的教学设计主要突出以下两点:

  1、在操作实践中验证等式性质(二)。

  在教学中,通过学生的亲身实践,边操作边观察边总结,使等式性质(二)顺利地生成,同时让学生对此有直观的理解,强化学习效果。

  2、通过直观图理解解方程的过程。

  在指导学生利用等式性质(二)解方程时,充分发挥了直观图的作用,加深学生对解方程的过程和依据的了解,提高学习效率。

  课前准备

  教师准备:

  PPT课件

  学生准备:

  天平,若干个贴有标签的砝码

  教学过程

  猜想导入

  师:谁能说出我们学过的等式性质?

  [学生回顾上节课学习的内容,并汇报:等式两边同时加上(或减去)同一个数,等式仍然成立]

  引导学生猜想:等式两边都乘同一个数(或除以同一个不为0的数),等式是否仍然成立呢?思考并在小组内交流自己的想法,然后汇报。

  设计意图:学生已经学过了等式两边都加上(或减去)同一个数,等式仍然成立的性质。上课伊始,先复习所学知识,并由此进行合理猜想,再自然地引入新课,直奔主题。

  动手验证,探究规律

  师:大家的猜想对不对呢?我们来验证一下。

  1、(课件演示,学生操作)天平左侧的砝码重x克,右侧放5克的砝码,这时天平的指针指向正中央,说明了什么?你知道左侧的砝码重多少克吗?怎样用等式表示?(说明天平平衡,左侧的砝码重5克,x=5)

  2、如果左侧再加上2个x克的砝码,右侧再加上2个5克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,3x=3×5)

  3、如果左侧有2个x克的砝码,右侧有2个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x=20)

  4、如果左侧拿走一个x克的砝码,右侧拿走一个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x÷2=20÷2)

  5、通过上面的游戏,你发现了什么?

  小结:等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。

  设计意图:利用课件的演示和动手操作,让学生体会天平两侧的变化情况,加深学生对等式的理解,体会等式的变化规律。

  解方程

  1、(课件出示教材70页方程:4y=2000)

  师:你们能求出这个方程的解吗?

  (学生先独立尝试,然后小组交流,并汇报)

  预设

  方法一:想?×4=2000,直接得出答案。

  方法二:用等式性质解方程,方程的两边都除以4,从而得出答案。

  师:为什么方程的两边都除以4,依据是什么?

  预设

  生:依据是等式的两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。

  让学生说出用等式性质解方程的过程。

小学数学教案《解方程》 篇六

  教学内容

  解方程:教材P69例4、例5。

  教学目标

  1.巩固利用等式的性质解方程的知识,学会解ax±b=c与a(x±b)=c类型的方程。

  2.进一步掌握解方程的书写格式和写法。

  3.在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。

  教学重点

  理解在解方程过程中,把一个式子看作一个整体。

  教学难点

  理解解方程的方法。

  教学过程

  一、导入新课

  我们上节课学习了解方程,这节课我们来继续学习。

  二、新课教学

  1.教学例4。

  师:(出示教材第69页例4情境图)你看到了什么?

  生:有3盒铅笔和4只铅笔,一盒铅笔盒中有x支铅笔。

  师:你能根据图列一个方程吗?

  生:3x+4=40。

  师:你是怎么想的?

  生:一盒铅笔盒有x支铅笔,3盒铅笔盒就有3x支铅笔。据此,可列出方程。

  师:说得好,你能解这个方程吗?

  学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。学生可能会疑惑:方程的左边是个二级运算不知识如何解。也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)

  师:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?

  生:先算出3个铅笔盒一共多少支,再加上外面的4支。

  师:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?我们可以先把“3x”看成一个整体。

  让学生尝试继续解答,教师根据学生的回答,板书解题过程。也可以让学生同桌之间再说一说解方程的过程。

  2.教学例5。

  师:(出示教材第69页例5)你能够解这个方程吗?

  生1:我们可以参照例4的方法,先把x-16看作一个整体。

  学生解方程得x=20。

  生2:我们也可以用运算定律来解。

  师:2x-32=8运用了什么运算定律?

  生:运用了乘法分配律。然后把2x看作一个整体。

  学生解方程得x=20。

  师:你的解法正确吗?你如何检验方程是否正确?

  生:可以把方程的解代入方程中计算,看看方程左右两边是否相等。

  三、巩固练习

  教材第69页“做一做”第1、2题。

  第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,使学生学会举一反三。

  这两道练习要让学生独立完成,教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。

  四、课堂小结

  1.在解较复杂的方程时,可以把一个式子看作一个整体来解。

  2.在解方程时,可以运用运算定律来解。

  五、布置作业

  教材第71页“练习十五”第6、8、9.题。

小学数学教案《解方程》【精彩6篇】

手机扫码分享

Top