一次函数教材分析【推荐6篇】

时间:2015-03-04 07:14:26
染雾
分享
WORD下载 PDF下载 投诉

一次函数教材分析 篇一

一次函数是初中数学中的重要内容之一,也是后续学习高中数学的基础。针对一次函数这一教材内容,在教学过程中,我们需要重点分析教材的设计和教学方法,以提高学生的学习效果和兴趣。

首先,教材的设计是教学的基础。一次函数教材应该从简单到复杂,循序渐进地引导学生理解一次函数的概念、性质和应用。教材的内容要紧密结合实际生活中的问题,让学生能够感受到一次函数在解决实际问题中的重要性和实用性。例如,可以通过实际案例,如货物价格的变化、速度与时间的关系等,引导学生理解一次函数的概念和意义。此外,教材中的例题应该涵盖不同难度的题目,以满足不同层次学生的学习需求。

其次,教学方法的选择对于一次函数的学习也至关重要。在教学过程中,我们可以采用多种教学方法,如讲授、示范、引导等,以激发学生的兴趣和积极性。在讲授环节,教师可以通过讲解概念、性质和定理,帮助学生建立起对一次函数的认识和理解。在示范环节,教师可以通过解题演示,让学生看到解题的思路和方法,帮助他们掌握解题的技巧。在引导环节,教师可以提出问题,引导学生主动思考和探索,培养他们的问题解决能力和创新思维。

此外,教学中还应注重培养学生的实际应用能力。一次函数是数学与实际问题相结合的重要工具,因此,在教学中要引导学生运用一次函数解决实际问题。可以设计一些实际应用题,如经济问题、工程问题等,让学生运用所学的一次函数知识解决实际问题,培养他们的实际应用能力。

最后,教学评价也是不可忽视的环节。在教学过程中,我们应该及时对学生进行评价,帮助他们发现和纠正错误,及时调整教学策略。评价的方式可以多样化,如课堂测试、小组讨论、作业批改等,以全面了解学生的学习情况和问题,进一步优化教学内容和方法。

总之,一次函数教材的分析与教学方法的选择是一门复杂而关键的任务。只有通过合理的设计和灵活的教学方法,才能提高学生的学习效果和兴趣,让他们真正理解和掌握一次函数的知识和应用能力。

一次函数教材分析 篇二

一次函数是初中数学中的重要内容之一,也是后续学习高中数学的基础。针对一次函数这一教材内容,我们可以从教材的设计、教学方法的选择和实际应用能力的培养等方面进行分析。

首先,教材的设计是一次函数教学的基础。教材应该从简单到复杂,循序渐进地引导学生理解一次函数的概念和性质。教材的内容应该紧密结合实际生活中的问题,让学生能够感受到一次函数在解决实际问题中的重要性和实用性。例如,可以通过实际案例,如物品价格的变化、速度与时间的关系等,引导学生理解一次函数的概念和意义。此外,教材中的例题应该涵盖不同难度的题目,以满足不同层次学生的学习需求。

其次,教学方法的选择对于一次函数的学习也至关重要。在教学过程中,可以采用多种教学方法,如讲授、示范、引导等,以激发学生的兴趣和积极性。在讲授环节,可以通过讲解概念、性质和定理,帮助学生建立起对一次函数的认识和理解。在示范环节,可以通过解题演示,让学生看到解题的思路和方法,帮助他们掌握解题的技巧。在引导环节,可以提出问题,引导学生主动思考和探索,培养他们的问题解决能力和创新思维。

此外,教学中还应注重培养学生的实际应用能力。一次函数是数学与实际问题相结合的重要工具,因此,在教学中要引导学生运用一次函数解决实际问题。可以设计一些实际应用题,如经济问题、工程问题等,让学生运用所学的一次函数知识解决实际问题,培养他们的实际应用能力。

最后,教学评价也是不可忽视的环节。在教学过程中,应及时对学生进行评价,帮助他们发现和纠正错误,及时调整教学策略。评价的方式可以多样化,如课堂测试、小组讨论、作业批改等,以全面了解学生的学习情况和问题,进一步优化教学内容和方法。

综上所述,一次函数教材的分析与教学方法的选择是一门复杂而关键的任务。只有通过合理的设计和灵活的教学方法,才能提高学生的学习效果和兴趣,让他们真正理解和掌握一次函数的知识和应用能力。

一次函数教材分析 篇三

  一、教材分析:

  本节课是义务教育课程标准实验教材人教版数学八年级上册14.2.2 一次函数。它是在认识了函数、函数的图象和正比例函数的基础上进行的,一次函数是最基本、最简单的函数,本节课主要学习一次函数的概念。本节内容既是前面知识的深化和应用,又为今后学习反比例函数、二次函数的概念,提供了一般思路和方法。因此本节课具有承上启下的重要作用,在函数的学习中起到非常重要作用。本节课以教课书中的问题和大量的实例为背景,引出一次函数的概念。一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数。本质是自变量x的k(常数)倍与一个常数的和的函数。因此本节课的教学重点是一次函数的概念及其应用。

  二、教学目标设计

  ⑴理解一次函数的概念,并能根据概念解决一些问题;理解函数解析式y=kx+b(k、b是常数,k≠0)与y=kx(k是常数,k≠0)之间形式上的关系。

  ⑵通过对不同背景下函数模型(关系式)的比较,抽象出一次函数概念,经历知识的归纳和探究的过程,并在探究过程中感受合作交流的必要性,同时提高学生的观察、抽象、概括的能力和语言表达能力。

  ⑶培养学生积极探索的精神以及观察、分析、总结的良好学习习惯。

  本节课要求学生能借助教课书中的问题和大量的实例的研究,提炼出一次函数的概念,并能通过对比,发现正比例函数解析式和一次函数解析式之间的关系,体会解决问题过程当中合作交流的重要作用。通过探究归纳一次函数的概念,体验研究函数概念的一般思路与方法。

  教学重点:一次函数的概念及其应用。

  教学难点:抽象出一次函数的概念。

  三、教学方法

  引导发现与自主探究

一次函数教材分析 篇四

  大家好!我今天说课的内容是***版八年级上册第七章第三节《一次函数》第1课时,下面我将从教材分析、教法学法分析、教学过程分析和设计说明等几个环节对本节课进行说明。

  一、教材分析

  1、教材地位和作用

  本节课是在学生学习了常量和变量及函数的基本概念的基础上学习的,学好一次函数的概念将为接下来学习一次函数的图象和应用打下坚实的基础,同时也有利于以后学习反比例函数和二次函数,所以学好本节内容至关重要。

  2、教学目标分析

  根据新课程标准,我确定以下教学目标:

  知识和技能目标:理解正比例函数和一次函数的概念,会根据数量关系求正比例函数和一次函数的解析式。

  过程和方法目标:经历一次函数、正比例函数的形成过程,培养学生的观察能力和总结归纳能力。

  情感和态度目标:运用函数可以解决生活中的一些复杂问题,使学生体会到了数学的使用价值,同时也激发了学生的学习兴趣。

  3、教学重难点

  本节教学重点是一次函数、正比例函数的概念和解析式,由于例2的问题情境比较复杂,学生缺乏这方面的经验,是本节教学的难点。

  二、教法学法分析

  八年级的学生具备一定的归纳总结和表达能力,所以本节课采用创设情境,归纳总结和自主探索的学习方式,让学生积极主动地参与到学习活动中去,成为学习的主体,同时教师引导性讲解也是不可缺少的教学手段。根据教材的特点,为了更有效地突出重点,突破难点,采用了现代教学技术——多媒体和实物投影。

  三、教学过程分析

  本节教学过程分为:创设情境,引入新课→归纳总结,得出概念→运用概念体验成功→梳理概括,归纳小结→布置作业,巩固提高。

  为了引入新课,我创设了以下四个问题情境,请学生列出函数关系式:

  (1)梨子的单价为6元/千克,买t千克梨子需m元钱,则m与t的函数关系式为 m=6t。

  (2)小明站在广场中心,记向东为正,若他以2千米/时的速度向正西方向行走x小时,则他离开广场中心的距离y与x之间的函数关系式为 y=-2x 。

  (3)小芳的储蓄罐里原来有3元钱,现在她打算每天存入储蓄罐2元钱,则x天后小芳的储蓄罐里有y元钱,那么y与x之间的函数关系式为 y=2x+3 。

  (4)游泳池里原有水936立方米,现以每小时312立方米的速度将水放出,设放水时间为t时,游泳池内的存水量为Q立方米,则Q关于是t的函数关系式为 Q=936-312t 。

  然后请学生观察这些函数,它们有哪些共同特征?

  m=6t;y=-2x;y=2x+3;Q=936-312t

  学生们各抒己见,最后由教师引导学生得出:它们中含自变量的代数式都是整式,并且自变量的次数都是一次。

  然后再问:你们能否用一条一般式来表示它们的共同特点?学生可能用两条一般式来表示:y=ax与y=bx+c(因为这节课我已上过)。教师对两条都进行肯定,同时追问;这两条能否选择一条呢?经过讨论,最后确定式子y=kx+b为能代表共同特征的解析式,我们称之为一次函数,今天这节课我们就来学习一次函数。

  这样通过创设问题情境,让学生通过比较函数解析式的具体特征,引出一次函数,提出了课题,让学生感受到一次函数存在于生活中,与我们并不陌生,增强了学生学好本节课的信心,同时也为一次函数概念的落实打下基础。

  提出课题后,教师说明:一般地,函数y=kx+b就叫做一次函数。然后问学生:作为一次函数的解析式y=kx+b,在y、k、x、b中,哪些是常量,哪些是变量?哪一个是自变量?哪个是自变量的函数?很明显, x、y是变量,其中自变量是x,y是x的函数,k、b是常量。那么对于一般的一次函数,自变量x的取值范围是什么?k、b能取任何值吗?很明显,x可取全体实数,k、b都是常数,但k≠0,因为如果k=0,那么kx=0,就不是一次函数了,所以一次函数的一般式后面应添上k、b都是常数,且k≠0,这里的k叫做比例系数。那么b可以等于0吗?当然可以,b=0就是引例中前2条式子的一般式,由此可知,当b=0时,函数就成了y=kx,,它是特殊的一次函数,我们称之为正比例函数,其中的常数k也叫做比例系数。

  由于一次函数和正比例函数的概念是本节课的重点,所以得出概念后,教师还应对概念进行强调:一次函数的一次指的是自变量x的指数是1次;比例系数k不能为0,但既可取正数,也可取负数;b可以为任何实数,当它取0时为正比例函数,也可以这样说:所有形如y=kx+b(k≠0)的函数都是一次函数,反过来,所有的一次函数都可以写成y=kx+b的形式。同理,所有形如y=kx(k≠0)的式子都是正比例函数,反过来,所有的正比例函数都可以写成y=kx形式。

  为了及时巩固概念,教师以快速抢答的形式让学生完成书上做一做:

  做一做:下列函数中,哪些是一次函数,哪些是正比例函数?系数k和常数项b的值各是多少?

  ①c=2πr;②y=x+200;③t=;④y=2(3-x);⑤s=x(50-x)

  做完此题教师应强调:①中π为常数,所以比例系数为2π;④、⑤应先化,简,巩固了一次函数的概念,此时出示例1,学生就显得比较轻松。

  例1:求出下列各题中x与y之间的关系式,并判断y是否为x的一次函数,是否为正比例函数?

  ①某农场种植玉米,每平方米种玉米6株,玉米株数y与种植面积x(m2)之间的关系。

  ②正方形周长x与面积y之间的关系。

  ③假定某种储蓄的月利率是0.16%,存入1000元本金后,本息和y(元)与所存月数x之间的关系。

  例2应由学生口答,教师板书,判断是否属于一次函数应严格按照概念中的一般式,通过本例还让学生弄清楚了正比例函数都是一次函数,而一次函数不一定都是正比例函数。同时也体会到了根据题中的数量关系可直接列出一次函数解析式。如果班里学生比较优秀,也可请大家模仿例1自己编一个例子,写出函数关系式,并判断写出的函数关系式属于哪种类型。这种编写具有一定的难度,教师对于学生的一点点闪光点都要予以肯定。

  接着教师出示练习1:已知正比例函数y=kx,当x=-2时,y=6,求这个正比例函数的解析式。

  此题是书上课内练习改编过来的,书上的原题是求比例系数k,但我认为求函数解析式层次更高一些,同时为下节课的待定系数法打下基础。

  此题可以这样分析:要想求这个正比例函数解析式,必须求出k的值,只要把一组x、y的值代入y=kx,得到一条以k为未知数的一元一次方程,即可求出k的值,然后就可写出解析式,建议教师板书过程,如果班里学生比较优秀,教师也可提到:如何求y=kx+b的解析式呢?同理可得只要求出k、b的值就可以了,k、b是两个未知数,只要两组x、y的值代入,联立二元一次方程组即可求出k、b的值,然后就可写出解析式,具体的操作下节课再学。

  以上设计使学生明白了如何求一次函数解析式及判断某条函数关系式是否为一次函数的方法,但大家都知道,学习了新知识,就是为了解决实际问题。

  由于例2是本节课的教学难点,里面的问题情景比较复杂,学生一下子难以适应,于是我对例2进行这样处理:

  先请同学们看屏幕:教师用多媒体出示一份国家2006年1月1日起实施的有关个人所得税的有关规定的材料,同时还附上一份税率表。

  然后问学生:哪位同学知道什么叫全月应纳税所得额,如果有学生讲出来更好,如果没人讲出来,教师自己介绍:应纳税所得额是指月工资中,扣除国家规定的免税部分1600元后的剩余部分。

  为了提高学生的学习兴趣,教师说:你想知道我们班数学老师和科学老师每月应缴个人所得税多少吗?老师们的隐私同学们是最想知道的,于是急着解决问题。

  我班数学教师的工资为每月2400元,科学老师的工资为每月2600元,问他俩每月应缴个人所得税多少元?

  相信学生很快就有答案(因为这节课我上过),并且方法几乎一致,都是用直接列算式的方法。教师对学生们的结果表示肯定,接着问:如果要计算10个工资均在2100元—3600元之间的教师每月应缴的个人所得税呢?还用直接列算式的方法吗?如果工资均在10000元以上呢?

  经过思考、讨论,发现工资额越大,计算应缴个人所得税的累计越麻烦,于是讨论有没有一种比较简单方法,如果有类似于计算公式的,把工资额直接代入就可求出的,那该多好啊!

  此时教师出示例2:按国家2006年1月1日起实施的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至2000元部分的税率为10%.

  (1)设全月应纳税所得额为x元,且500<x≤2000,应纳个人所得税为y元,求y关于x的函数解析式和自变量的取值范围;

  (2)小明的妈妈的工资为每月3400元,小聪妈妈的工资为每月3600元,问她俩每月应缴个人所得税多少元?

  有了刚才的铺垫,学生对此题有了深入的理解,就不再害怕了,教师可先由学生回答,再自己补充。可以这样分析:由于500<x≤2000,所以纳税的税率有两部分:一部分是5%,有500元,另一部分是10%,有(x-500)元,于是y=500×5%+(x-500)×10%=0.1x-25 p="" (500<x≤2000(),如果x的取值超过2000,那么y还要继续累加。对于(2)题,学生有了前面的铺垫,很自然地会把x的值代入(1)中的解析式。但需要强调的是这里的x表示应纳税所的额,两位的工资要先减掉1600元,此题可归结为已知自变量的值求函数的值。如果要求很多人的应缴个人所得税,只要他们的应纳税所的额在这个范围内,都可以代入这条解析式,无须通过直接列算式一条一条地算。并且得出:人数越多,x越大,先求出解析式再代入比直接列算式计算要简单得多。

  此题的设计使学生体会到了运用函数模型解决实际问题的重要性,但某些爱动脑筋的同学可能会问:虽然运用函数可以解决一些实际问题,但方程也是解决实际问题的重要数学模型,它们有什么区别吗?怎样区别?拿到一道题怎么会想到用函数来解决,简单地说,如果没有特殊说明,能用方程解决的问题就用方程来解决,不能用方程来解决的问题就马上想到用函数来解决。但如何建立函数模型,具体的方法我们下节课再学习。

  本例的设计使学生既了解了国家的政策法规,又学会了用函数来解决实际问题,通过计算老师们的应缴个人所得税,让学生初步体会了个人所得税的计算方法,再假设要求多数人的所得税,激发了学生探求好方法的欲望,使学生体会到了函数的作用。

  为了使学生学有所用,就来完成书上课内练习2。

  最后在教师提问的基础上,让学生对本节内容进行归纳总结。

  本节课的作业是分层布置:A组、B组、C组分别由班里的三个不同层次的同学完成。

  四、设计说明

  本节课通过创设问题情境,归纳总结得出一次函数的概念,同时利用一次函数解决了生活中的实际问题。整节课没有大量的练习为基础,而是以提高学生的数学素质为指导思想,以学生积极参与教学活动为目标,以概念讲解为载体,以展开思维分析为主线,在课堂教学中,教师充分调动一切因素,让学生在和谐,愉悦的氛围中获取知识,掌握方法!整个教学既突出了学生的主体地位,又发挥了教师的指导作用。

一次函数教材分析 篇五

  一、分析教材与学生:

  这是华师大八年级数学(下)第17章第3节中的一堂课。本节课是在学生学习了平面直角坐标系、函数的图象,一次函数及其图象的基础上学习的,它既是对前面知识的延续,又是为后面学习反比例函数、二次函数的性质作铺垫,也是今后学习高中代数,解析几何及其它数学分支的重要基础。在教材中起着承上启下的作用。其中所渗透的“数形结合”,归纳等数学思想方法是对学生的数学有重要的作用。学生在理解图象的性质,以及运用数形结合的思想解决问题,感到困难。结合以上分析,确定本节课的重难点为:

  教学重点:结合图象,使学生进一步理解一次函数的图象和性质;

  教学难点:根据图象的性质来解决一些实际问题。

  教学关键:利用数形结合的思想,辅以电脑演示动画,变抽象为形象,注重知识的形成、发展过程,使学生在这些过程中展开思维,从而突出重点、突破难点。

  二、教学目标:

  ①知识目标:

  1、理解一次函数图象的性质,及学会性质判断函数值大小。

  2、学会待定系数法求一次函数解析式

  ②能力目标:培养学生观察、分析的能力,数形结合能力,化归能力,及与他人合作学习能力,培养学生创造性思维和逻辑推理的能力。

  ③情感目标:体现了知识来源于实践,而又运用于生活,同时渗透转化的思想,让学生体验客观事物是不断运动发展变化,而事物之间总是互相联系,互相制约的辩证唯物主义观点

  三、陈述教学设想:

  1、教法分析:本节课基本设计思路是着力于学生探索知识、体验知识发生、发展形成过程,通过创设探索学习情境,组识学生小组讨论、合作,让学生经历“尝试——猜想——验证”的过程中接受知识。获取知识。教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。

  2、学法分析:通过让学生社会调查,收集有关资料等活动设计,引导学生观察、发现、转化,并在学生动手实践,自主探索,合作交流的基础,培养其互相协作能力,达到教法与学法的有机结合。以学生为主体,通过自主探索的方法,引导学生通过实践、思考、探索、交流获得知识,形成技能。培养学生动手,动口,动脑的能力。

  ①学会通过观察、比较、推理能概括一次函数的图象与性质。

  ②学会利用旧知转化成新知,解决新问题的能力。

  ③学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。

  3、用及课程资源开发:本课将采用多媒体课件教学、辅之于投影图片等

  四、教学过程:

  (一)创设情景,引入课题:

  1、教师事先让学生利用课余时间到去了解联通公司手机使用收费情况,提出问题

  (1)联通的月租费是多少?

  (2)每分钟费用又是多少?

  在这基础上,让学生自己设计一个问题,然后能用函数关系来表示,从而引出诸如像y=30+0.3x等关系式组织学生讨论,生活中这样的函数关系式还能写出一些吗?

  2、教师让学生算一算,取10分、20分时所化费用并比较y1与y2的大小,我们可以从图象上又更直观地判断函数值的大小,从而引出课题:一次函数的性质(出示课题)

  (二)师生互动,探求新知

  (1)先让学生画出y=30+0.3x(x≥0)图象

  (2)让学生先独立思考,提出问题

  ①图象的位置从左到右是怎样变化的

  ②函数的值随着x又如何变化?在此基础上,组织四人小组讨论

  (3)交流阶段,每组派代表上台发表汇报本小组成员的探索与成果,同时回答其他小组同学的提问

  (4)教师又让学生自己画出y=—x+2,及y=—2x—1的图象,并再次组织讨论。

  最后,教师根据刚才学生讨论交流情况,用多媒体显示,学生得到的一次函数的性质

  ①K>0时,y随x的增大而增大,这时函数的图象从左到右上升

  ②K<0时,y随x的增大而减小,这时函数的图象从左到右降低

  (5)这时教师又带领学生回到课一开始时提出的问题让学生学会从图象上观察,函数值的大小,从而培养数形结合能力,及应用能力,也能使所学知识得到及时巩固。

  (三)面授调节,练习反馈

  1、教师用多媒体显“做一做”然后组织学生独立完成

  2、巩固一次函数的性质,

  设计如下练习

  (1)y=(m-4)-2,当m取何值时,y随x的增大而增大

  (2)y=(m+0.5)xm2+1是一次函数,且y随x的增大而减小,求m值

  (3)图象上有两点(—1,a),(3,b)请比较a、b的大小

  (这题练习鼓励学生运用多种方法解决,然后让他们自己比较方法好坏)

  (4)设计一个实际应用题,让学生运用刚学的新知识尝试解决。

  (5)讲解课本例题,简要介绍待定系数法,及如何用“两点法”求一次函数解析式。

  3、同桌之间互相出题,再次巩固性质

  设计练习如下,已知一次函数图象如图如示,求一次函数解析式。

  (四)、梳理知识,系统归纳

  1、归纳总结:①哪些函数y随x的增大而增大?哪些函数y随x的增大而减小②与系数k、b的符号有何关系?③小结后填表

  图象的位置性质相同点

  2、提问:①通过这一节课学习,大家有哪些体会和收获?

  能说说吗?

  ②这节课你能用所学的一次函数的性质来解决生活中的实际问题吗?

  ③这节课我们学习了哪些数学思想方法?

  (同桌对讲、畅谈自己的感受和体会、学生发言,教师归纳、总结)

  (五)布置作业

  1、必做题见作业本(A)

  2、选做题:①A城有化肥200吨,B城有化肥300吨,现要把化肥运往C、D两农村,如果从A城往C、D两地运费分别为20元/吨和25元/吨,从B城运往C、D两地运费分别为15元/吨和22元/吨,现已知C地需要220吨,D地需要280吨,如果某个体户承接这项运输业务,请你帮他算算,怎样调运花钱最少。

  3、写一篇有关“一次函数性质”的小论文。

  (六)、板书设计:

  一次函数的性质

  性质:

  小结:

  教师作图演示区

  表格:

  (七)说评价:

  学生学习数学的过程是一个基于学生经验的主动建构的过程。新课程理念下的教学过程是生生、师生交往,积极互动的过程。使学生通过互动得到其相应的发展是我们进行教学的根本宗旨,同时,学生之间互相合作,彼此获得双赢,我们所采取的一切方法都是为这个宗旨服务的,我们教师怎样才能在“动”的课堂时刻把握方向引领学生,到达发展学生的彼岸,是我们必须思考的问题。“关注学生的生活,认识经验”是新课标所提倡的,在本堂课设计中,我力图体现上述宗旨。

  (八)教学设计说明

  本节课的主要内容是规律原理的探索和技能的形成,因此本节课归为探究型教学目标类型。基于这一原则,我对本节课教学设计的指导思想如下:

  ⑴以实现教学目标为前提:强调学生双基的培养以及思想品德教育,发展学生的思想素质和能力素质,培养学生创新意识和创造能力,力求体现以学生发展为本。

  ⑵以现代教育理论为依据:注重学生的心理活动过程、人类掌握知识和形成能力的发展过程,强调教学过程的有序性。

  ⑶以基本的教学原则作指导:充分发挥学生的主观能动性,面向全体、因材施教,加强学法指导,使学生在学习中学会学习,学会认知。

  ⑷以先进的现代信息技术为手段:适当地辅以先进的电脑多媒体技术,演示运动变化规律、揭示事物本质特征;提供典型现象和过程,供学生作为分析、思考、探究、发现的对象,以帮助学生理解原理,并掌握分析和解决问题的步骤和方法;同时注意将现代信息技术和传统教学媒体有机结合,以实现教学最优化。

一次函数教材分析 篇六

  一、 教材分析

  (一)本节内容在教材中的地位和作用

  本课的内容是华师大版八年级数学下册第18章第3节第2课时,一次函数在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本章中关于一次函数的知识结构如图:

  本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习"用函数观点看方程(组)与不等式"的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习"数形结合"这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

  (二) 教学目标

  基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

  知识目标:

  1、理解直线y=kx+b与y=kx之间的位置关系;

  2、会利用两个合适的点画出一次函数的图象;

  3、掌握一次函数的性质。

  能力目标

  1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;

  2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

  情感态度目标:

  1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;

  2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

  (三)教学重点难点

  教学重点:一次函数的图象和性质。

  教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

  二、教法学法

  (1)教学方法

  1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

  目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

  2、直观教学法——利用多媒体现代教学手段。

  目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

  (2)学法指导

  1、应用自主探究,培养学生独立思考能力,阅读能力和自主探究的学习习惯。

  2、指导学生观察图象,分析材料。培养观察总结能力。

  三、 教学程序设计

  (一)、创设情境,导入新课

  活动1:观察:

  展示学生作的函数图象 (课本P41 做一做),强调列表及图象上的点的对应关系。

  1、课前让两名学生将图像画到黑板上,以备上课时应用。

  2、课上展示学生函数图像作业 ,既为学生完成作业情况检查,又为本节课打下基础。

  这样安排的目的:

  1、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

  2、教师对学生有了更深层次的了解,能更好地把握课堂。

  (二)尝试探索、体验新知:

  活动2、观察探索:

  比较两个函数图象的相同点与不同点?

  第一步;根据你的观察结果回答问题。(书中原问题1、2、3)

  目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。

  第二步:在学生作出的两条平行直线中,教师先引导学生观察正比例函数图象的交点情况,引用两点法(两点确定线);在此基础上引导学生发现"直线y=--6x+5与坐标轴交点"并思考:一次函数y=--6x+5又如何作出图象?

  目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。

  活动3:知识再体验:在同一直角坐标系中画出四个K值不同的一次函数图象,并观察分析。

  目的:进一步巩固两

点作图法,为探究一次函数的性质作准备。

  活动4:展示"上下坡"材料,解决象限问题。(多媒体展示)

  目的:让学生触发漫画中"上下坡"的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。

  活动5:师生互动(师生角色互换),提高拓展。(多媒体展出内容)

  目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。

  (三)课堂小结

  引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受。

  目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。

  (四)作业布置

  加强"教、学"反思,进一步提高"教与学"效果,

  做课本42页 44页习题。

一次函数教材分析【推荐6篇】

手机扫码分享

Top