圆的周长拓展训练教学设计【实用6篇】

时间:2012-02-07 03:38:42
染雾
分享
WORD下载 PDF下载 投诉

圆的周长拓展训练教学设计 篇一

标题:探索圆周长公式的发现

引言:

在数学中,圆是一个基本的几何形状,而圆的周长是一个重要的概念。在本节课中,我们将通过一系列的探索活动,引导学生发现圆周长公式,并通过拓展训练加深对该概念的理解。

活动一:测量圆的直径与周长的关系

1. 准备一些不同尺寸的圆形物体,如硬币、杯子底部等。

2. 让学生使用一个软尺或一个卷尺测量这些圆形物体的直径和周长。

3. 让学生记录测量结果,并观察直径和周长之间的关系。

4. 引导学生发现:周长与直径之间存在什么样的关系?是否存在一个固定的比例关系?

活动二:绘制圆的直径与周长图表

1. 让学生使用上述测量结果,绘制一个图表,横轴表示圆的直径,纵轴表示圆的周长。

2. 让学生观察图表,并寻找规律。

3. 引导学生发现:圆的周长与直径之间是否存在一个确定的关系?如何表示这个关系?

活动三:推导圆周长公式

1. 通过上述活动,引导学生发现:圆的周长与直径之间存在一个比例关系,即周长等于直径的某个倍数。

2. 让学生思考如何表示这个倍数关系,引导他们尝试使用数学符号推导圆周长公式。

3. 引导学生发现:圆周长公式可以表示为C = πd,其中C表示周长,d表示直径,π表示一个常数。

活动四:应用圆周长公式解决问题

1. 让学生运用圆周长公式解决一些实际问题,如计算一个轮胎的周长、计算一个圆桌布的长度等。

2. 引导学生思考:为什么圆周长公式是正确的?可以通过什么方法验证?

结尾:

通过这一系列的探索活动,学生将深入理解圆周长的概念,并通过发现和推导圆周长公式,加深对该公式的理解和应用。这样的活动设计可以激发学生的兴趣,培养他们的探索精神和数学思维能力。

圆的周长拓展训练教学设计 篇二

标题:圆周长与π的关系探究

引言:

π是一个神秘而重要的数学常数,它与圆相关,但具体的联系和含义很少为学生所了解。通过本节课的探究活动,我们将引导学生深入探究圆周长与π的关系,从而加深对圆周长公式的理解。

活动一:测量圆的周长与直径的比值

1. 准备一些不同尺寸的圆形物体,并将其直径测量出来。

2. 让学生使用一个软尺或一个卷尺测量这些圆形物体的周长。

3. 让学生计算每个圆形物体的周长与直径的比值。

4. 引导学生观察比值的特点,并与同学分享结果。

活动二:探索π的近似值

1. 引导学生思考:周长与直径的比值是否在不同的圆形物体之间有相同的趋势?

2. 让学生将各个比值进行比较,寻找相同的特点。

3. 引导学生发现,无论圆的尺寸如何,周长与直径的比值都接近于一个常数,这个常数就是π。

4. 引导学生计算出多个圆形物体的周长与直径比值的平均值,从而得到π的近似值。

活动三:通过π推导圆周长公式

1. 通过上述活动,引导学生发现:π是周长与直径的比值,而圆的周长又等于直径的某个倍数。

2. 让学生思考如何将这两个关系结合起来,推导出圆周长公式C = πd。

3. 引导学生通过实际计算验证圆周长公式的准确性。

活动四:应用π解决问题

1. 让学生运用π解决一些实际问题,如计算一个轮胎的周长、计算一个圆形画框的长度等。

2. 引导学生思考:为什么π是一个无理数?如何使用π来计算圆的面积?

结尾:

通过这一系列的探索活动,学生将深入理解圆周长与π的关系,并通过推导圆周长公式和应用π解决实际问题,加深对该概念的理解和应用。这样的活动设计可以培养学生的数学思维能力和解决问题的能力,激发他们对数学的兴趣。

圆的周长拓展训练教学设计 篇三

  【教学内容】

  新课标人教版六年级上册第62~64页。

  【教学目标】

  1.通过小组合作探究,实际测量计算理解圆周率的意义,推导出圆周长的计算公式。

  2.能利用圆的周长的计算公式解决一些简单的数学问题。

  3.培养学生的观察、比较、分析、综合及动手操作能力。

  4.通过对圆周率的计算,渗透爱国主义的思想。

  【教学重、难点】

  重点:让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程的理解,并掌握圆的周长计算方法。

  难点:理解圆周率的意义。

  【教具、学具】

  课件、软尺、直尺、绳子、圆形。

  【教学过程】

  课前交流:请同学们唱一首歌。

  (设计意图:为了创设一种和谐宽松的课堂氛围,让学生在愉快的环境中探索知识,养成一种良好的课前准备的学习习惯。)

  一、创设情景,生成问题

  国王要与阿凡提比赛谁的小毛驴跑得快,通过观看比赛图,国王的小花驴跑的是圆形轨迹,阿凡提的小灰驴则跑的是方形的轨迹,结果国王的小花驴先到达终点,阿凡提觉得比赛不公平,引导学生说出比赛不公平的原因是比赛的路程不同,它们比赛的路程刚好就是正方形和圆形的周长,要相比较正方形和圆形的周长。

  (设计意图:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)

  让学生说一说常用的长度单位有哪些。宰出示圆形纸片,边比划边启发学生说出圆的周长的含义。那么这个圆形纸片的周长是多少呢?你们能不能想办法求出这个图形的周长呢?今天就来探究圆的周长的计算方法。板书课题:圆的周长。

  (设计意图:由于学生已经学习了周长的一般性概念,因此应已学知识为基础。即让学生在充分理解了“封闭图形一周的长度是这个图形的周长”这个一般性概念之后,再去理解圆的周长这个特殊概念。)

  二、探索交流,解决问题。

  师:下面请同学们把准备好的圆拿出来,圆的周长指的是哪一部分的长,同桌互相比划一下。

  师:同桌想一想圆的周长怎样测量?

  师:把你的好方法在小组内交流一下。

  (设计意图:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)

  师:老师发现很多小组已经找到方法了,哪个小组愿意到前边来把你们的方法告诉大家?

  (设计意图:通过实物操作,向其它小组的同学展示本小组的结果,增强学生的自信)

  生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长。

  师:这种方法还真不错!为了让大家看的更清楚些,老师把这种方法重新演示一遍。

  师演示(线绕圆一周,然后量出线的长度。)

  师:还有其他的方法吗?

  生:我们小组是直接用米尺绕圆一周,就可以读出圆的周长。

  师:大家觉得这种方法怎么样?是呀,这个方法太简单了,我们为他们鼓掌。

  生:我们小组把圆沿着尺子滚动一周,这一周的距离就是圆的周长。

  师:这个办法也很妙!其他同学还有要补充的吗?

  生:应该在圆上先做个记号,滚动时记号要和尺子的零刻度对齐。

  师:你的想法可真不简单!

  师演示(圆沿着尺子滚动一周):圆沿着尺子滚动一周的距离就是圆的周长。

  师:刚才大家找到了这么多求圆的周长的好的方法。那我们能不能用这些方法测量出圆形体育场的一周有多长,或者把地球近似地看成一个球,绕赤道一周的长度是多少呢?因此有些圆的周长没办法用绕线和滚动的方法测量出来。那咱们能一起想办法找到一种更简便更科学的方法来解决这个问题吗?

  生:能!

  师:正方形的周长和什么有关?

  生:周长是边长的4倍,

  师:那么圆的周长和什么有关系呢?

  生:圆的直径越长圆越大,所以周长就越长。

  师:那周长和直径有怎样的关系呢?

  (设计意图:学生已经知道了周长是边长的4倍,接着提出圆的周长与什么有关,这样设计唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来猜想、探索、验证就显得自然顺畅,并能激发学生的求知欲。)

  师:同学们用自己手中的工具测量出了它们的周长和直径,再请同学们动手计算一下周长与直径的比值是多少?点名汇报结果。

  师:现在大家通过填写表格发现了什么?

  生:在测量中发现,大小不同的圆的周长是不同的。

  师:既然不同的圆的大小是不同的,那么圆的大小是由什么决定的?

  生:是由半径(或直径)唯一决定的。

  师:圆的周长与直径或半径之间到底存在着怎样的关系?

  生:每组算的结果不大一样,但都是3点多。

  师:老师这里有一根绳子和一个圆,用来探究圆的周长和直径的关系,可是老师忘记带直尺了,于是老师就把这根绳子平均分成若干段,每段的长度都和圆的直径相等,然后绕圆一周,发现圆的周长刚好是三个半径多一点,老师探究的结果和你们计算的结果一样吗?

  生:一样。

  师:这是怎么回事呢?其实早就有人研究出任意一个圆的周长和这个圆直径的比值是一个固定不变的数,我们把这个数叫做圆周率,用字母π来表示,它是一个无限不循环小数,它的值是:π=3.1415926535……,我们在计算时,一般只取它的近似值,即π≈3.14。

  师:同学们你知道吗?我们古代的数学家在圆周率的计算上可是有着辉煌的成绩的,谁来讲给同学们听?

  我们有这么伟大的数学家,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。

  (设计意图:挖掘圆周率蕴含的教育价值,让学生了解自古以来,人类对圆周率的研究历程,感受数学文化的魅力。激发研究数学的兴趣,通过学生讲故事渗透爱国主义思想。)

  师:你能通过分析表格得到圆的周长的计算公式了吗?

  学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)

  师:从表中我们可以看出圆的周长÷直径=圆周率

  (板书:圆的周长=π×直径)。

  如果用字母c表示圆的周长,d表示圆的直径,那么圆的周长计算公式是c=πd(板书),再根据直径和半径的关系得到c=2πr(板书)。

  生读:c=πdc=2πr

  师:从计算公式可以看出,要求圆的周长必须要知道哪些条件?

  生:圆的直径或半径。

  (设计意图:通过填写观察表格,使每一个学生都有了动手操作及计算得出结果的成功体验。而且把不同的圆的有关数据,通过表格的形式呈现出来,更有利于学生观察、比较,初步发现圆的周长总是直径的3倍多一些。周长和直径的比值是一个固定值,引出圆周率的概念,突破了教学的难点。)

  三、回顾整理,反思提升。

  这节课我们通过猜想、探索、验证得出了圆的周长计算公式,你们精彩的表现让老师收获了很多快乐。你有什么收获呢?

  (1)今天我学习了圆的周长的知识。我知道圆周率是()和()的比值,它用字母()表示。

  (2)我还知道圆的周长总是直径的()倍。已知圆的直径就可以用公式()求周长;已知圆的半径就可以用公式()求周长。

圆的周长拓展训练教学设计 篇四

  一、素质教育目标

  (一)知识教学点

  1、认识圆的周长,知道圆周率的意义。

  2、理解和掌握圆周长的计算公式。

  (二)能力训练点

  1、会用公式正确计算圆的周长。

  2、通过引导学生探究圆周长的意义,培养学生抽象概括能力。

  (三)德育渗透点

  1、通过对圆的周长测量方法的探究,渗透化归思想。

  2、通过介绍祖冲之在圆周率方面的研究成就,进行爱国主义教育。

  (四)美育渗透点

  通过演示,使学生受到美源于生活,美来自生产和时代的进步,感悟数学知识的魅力。

  二、学法引导

  1、引导学生操作、实验,从中发现规律。

  2、运用周长公式,指导学生计算。

  三、教学重点:

  圆周长的计算方法

  四、教学难点:

  圆周率意义的理解。

  五、教具、学具准备:

  微机、实物投影、小黑板、系有螺丝帽的线、大小不等的圆片、铁圈、皮尺、直尺、线绳。

  六、教学过程:

  (一)认识圆的周长

  1、创设情境

  (屏幕显示)两只小蚂蚁在地上跑步,红蚂蚁沿着正方形路线跑,黑蚂蚁沿着圆形路线跑。

  2、迁移类推

  (1)要求红蚂蚁所跑的路程,实际上就是求正方形的什么?什么叫正方形的周长?怎样计算正方形的周长?(板书:围成)

  (2)求黑蚂蚁所跑的路程,实际上就是求圆的什么?(板书并揭示课题:圆的周长),围成圆的这条线是一条什么线?(板书:曲线)这条曲线的长就是什么的长?什么叫圆的周长?(生回答,师完成板书:围成圆的曲线的长叫做圆的周长)。

  3、实际感知

  (1)师拿出一个用铁丝围成的圆,让学生用手摸出圆周长的那部分。

  (2)让全班学生动手摸摸硬币、硬纸板、圆柱的周围,同桌之间边说边指出周长是指哪一部分的长。

  (二)测量圆的周长

  圆的周长是一条封闭的曲线,你能用手边的测量工具,测出圆的周长吗?你能想出几种测量方法?(学生自己动手测量硬币、圆铁圈、硬纸板等)。

  学生说出测量方法:化曲为直、滚动、软皮尺测、绳绕圆一周。生边说,师边微机演示。

  师:你们想的这些方法都很好,但是不是对所有的圆都能用这些方法测量出它的周长呢?请同学们看:(师捏住一头系着螺丝帽的线,用力甩出一个圆)象这个圆你能用绕线法或滚动法量出圆的周长吗?当然不能,因为只要老师的手一停,圆就消失了,那么我们能不能找出一条求圆周长的普遍规律呢?

  (三)引导发现圆的周长与直径的关系:

  1、圆的周长与什么有关系?

  启发思考:正方形的周长与它的边长有什么关系?(周长是边长的4倍)那么圆的周长是否也与圆内的某条线段长有关,也存在着一定的倍数关系呢?

  学生小组讨论后汇报结果。

  微机演示:用三条不同长度的线段为直径,分别画出三个大小不同的圆,并把这三个圆同时滚动一周,得到三条线段的长分别就是三个圆的周长。

  引导学生观察,生说出观察结果,从而得出:圆的周长与直径有关系。

  2、圆的周长与直径有什么关系?

  (1)测量计算

  小组合作,分别量出几个圆形物体的周长和直径,并计算出周长和直径的比值,结果保留两位小数,并把相应的数据填在89页的表格中。

  请同学汇报所填数据。

  观察这些数据,能发现什么呢?

  生概括出:每个圆的周长是它直径的3倍多一些。

  (2)媒体演示:

  屏幕上大小不同的三个圆及三个圆的周长(化曲为直的线段),用每个圆的直径分别去度量它的周长,得出:大小不同的三个圆,每个圆的周长还是它直径的3倍多一些。

  (3)引导概括

  其实,任何一个圆的周长都是它的直径的3倍多一些。这就是圆的周长与直径的关系。

  3、介绍圆周率和祖冲之在圆周率研究方面所作出的贡献。

  表示这个3倍多一些的数是一个固定不变的数,我们把圆的周长与直径的比值,叫做圆周率。(板书:圆的周长和直径的比值,叫做圆周率。)用字母π表示。

  教学生读写π,介绍π在计算时如何取值。

  学生自己读书中介绍祖冲之的一段知识。

  (四)归纳圆的周长的计算公式。

  学生讨论:

  (1)求圆的周长必须知道哪些条件?

  (2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?

  生回答,教师板书:C=πd?或C=2πr

  (五)应用圆周长计算公式,解决简单的实际问题。

  小黑板出示例1:一张圆桌面的直径是0.95米,这张圆桌面的周长是多少米?(得数保留两位小数)

  指名读题,自己列式解答(1生板演)

  (六)订正时教师强调说明:

  (1)解答时不必写出公式。

  (2)π取两位小数,计算时就不再看成近似的数了。

  (3)计算中取近似值的那一步要用“≈”表示。

  完成例1下的做一做,实物投影订正。

  (七)看书质疑,全课小结。

  (八)课堂练习

  1、判断正误,并说明理由。

  (1)圆的周长是直径的3.14倍。

  (2)大圆的圆周率比小圆的圆周率大。

  (3)π=3.14?

  2、求下面各图的周长(只列式不计算)

  3、求下面各圆的周长

  (1)d=2米?

  (2)d=1.5厘米

  (3)d=4分米

  r=6分米r=3米r=1.5厘米

  分三组进行解答,订正时强调单位名称。

  4、解答简单应用题

  (1)一个圆形花池,直径是4.2米,周长是多少?

  (2)一个圆形牛栏的半径是12米,要用多长的粗铁丝才能把牛栏围上3圈?(接头处忽略不计)

  (3)一种压路机的前轮直径是1.32米,前轮的周长是多少米?如果前轮每分转6周,它每分钟前进多少米?(得数保留整米数)。

  (九)课后练习

  量一量家中自行车轮胎的外直径,计算它滚动一周前进多少米?

圆的周长拓展训练教学设计 篇五

  教学内容

  苏教版《义务教育课程标准实验教科书数学》五年级(下册)第98~99页例4、例5以及相应的“试一试”“练一练”,练习十八第1~4题。

  教学目标

  1、使学生通过绕一绕、滚一滚等活动,自主探索圆的周长与直径的倍数关系。知道圆周率的含义,并能推导出圆的周长公式,学会运用公式解决简单的求圆周长的实际问题。

  2、使学生在活动中培养初步的动手操作能力和空间观念。

  3、结合圆周率的教学,使学生感受数学的文化价值,激发学习数学的兴趣。

  教学过程

  一、操作导入

  谈话引入,并指名说说怎样测量圆的直径。

  每个同学拿出事先准备好的三个圆形物体(圆形铁环、一元硬币、塑料胶带或其他任意一个圆)。

  学生独立测量圆的直径,比一比谁量得最精确。

  组织交流。

  [思考:量直径是上一节课的内容。在教学新知之前进行复习,意图有两点:一是因为直径与周长的关系是本节课的主要研究内容,量直径能为研究圆周率和推导圆的周长公式服务;二是让学生练习比较精确地测量直径,为接下来比较精确地测量圆的周长做必要的准备。]

  二、揭示课题

  谈话:今天这节课我们一起来研究圆的周长。(板书课题:圆的周长)

  三、自主探索

  1、出示圆形铁环。

  谈话:这是一个用铁丝围成的圆,谁上来指一指这个圆的周长?(学生指出圆的周长)同桌讨论一下,什么是圆的周长?(引导学生概括圆的周长的含义)

  提问:你能量出这个铁丝围成的圆的周长吗?

  学生动手尝试测量。(可能会想到把铁丝剪开、拉直,再测量铁丝的长。)

  指名介绍方法,并上台进行测量演示。

  2、出示一元硬币。

  提问:你能测量这枚硬币的周长吗?

  指名说说方法,学生动手测量。

  3、猜测联系。

  提问:对于刚才这几种测量圆周长的方法,你有何评价?

  谈话:回忆一下,我们以前是怎样求长方形、正方形的周长的?

  引导:是啊,用绕线法和滚圆法测量圆的周长比较麻烦,测量的结果也不够准确,我们应该寻找更简便的计算圆周长的方法。那么,圆的周长与它的什么有关系呢?(与直径的长短有关)

  追问:圆的周长与它的直径之间可能有怎样的关系呢?(学生提出各种猜想,也可能会提出圆的周长等于直径的3、14倍)

  谈话:大家能提出不同的猜想,这很好!不过猜想只是猜想,圆的周长与直径到底有什么关系,还需要我们进一步研究与验证。

  4、研究验证。

  出示活动要求:

  (1)每个同学选择一个圆形物体,分别测量它的直径和周长,并计算圆的周长除以直径的商。

  (2)把你们小组测量与计算的结果整理在下面的表格里(表格略)。

  学生活动后,以小组为单位,组织汇报。

  提问:通过对实验结果的分析,你有什么发现?

  小结:其实,圆的周长总是直径的3倍多一些,而且这个倍数是一个固定不变的数。我们把圆的周长除以直径的商称为圆周率。一般情况下,人们用字母π表示圆周率。它是一个无限不循环小数,它的值等于3.1415926……为了计算方便,我们取它的近似值3.14。(板书:圆周率π)

  谈话:关于圆周率还有一段值得我们骄傲的历史呢!请同学们打开书本,读一读第120页下面的“你知道吗”。

  提问:读了这段介绍,你知道了什么,有什么感想?还想知道些什么?

  提问:为什么我们研究的结果和圆周率的实际值有一定的误差?

  [思考:量铁丝围成的圆、一元硬币、塑料胶带等圆形物体的周长,是看似简单、重复的操作,但实际上不断激起了学生思维的浪花。第一次量铁丝围成的圆的周长,几乎所有的学生都能想到将铁丝围成的圆剪开、拉直成一条线段再测量,在操作中充分感受了“化曲为直”的数学思想。量一元硬币的周长,则不能直接剪开、拉直,而必须采用绕线法或滚圆法,这在引导学生灵活解决问题的同时,又使学生感受到实际测量得到周长的方法并不方便,从而产生探究圆周长计算公式的心理需求。在此基础上,再让学生分组自由选择圆形物体测量周长,探究圆的周长和直径的关系,激发了学生参与学习活动的积极性。]

  5、推导公式。

  提问:根据圆周率的意义,怎样求圆的周长?(板书:圆的周长=圆周率×直径)

  提问:如果用C表示圆的周长,怎样用字母表示圆周长的计算公式呢?(板书:C=πd)

  谈话:你能运用圆周长的计算公式解决一些实际问题吗?

  出示“试一试”。

  学生独立解决后,组织反馈。

  四、练习巩固

  1、判断下面的说法是否正确。

  (1)圆周率等于3.14。

  (2)圆的周长总是直径的π倍。

  (3)一个半圆形的周长是这个圆周长的一半。

  学生判断后,让学生说一说自己是怎

  样想的。

  2、一个圆形木桶的外直径是4.8分米,在它的外面加一道铁箍,这道铁箍长多少米?(接头处忽略不计)

  让学生说一说题目的.意思,再独立解答。

  3、地球赤道的半径约是6278千米,绕赤道走一圈有多少千米?

  先让学生估计地球赤道的周长,再独立计算。

  五、课堂总结(略)。

圆的周长拓展训练教学设计 篇六

  【教学内容】

  苏教版九年义务教育六年制小学数学第十一册”圆的周长”

  【教学目的

  1、使学生理解圆周率的意义,理解掌握圆周长公式,并能正确计算圆的周长。

  2、培养学生分析、综合、抽象、概括和解决简单的实际问题的能力。

  3、学生进行辩证唯物主义“实践第一”观点的启蒙教育及热爱祖国的教育。

  【教学重点】

  掌握圆周长的计算方法

  【教学难点

  理解圆周率的意义

  【教具、学具准备】

  教具:录像、投影片、3个大小不等的圆、分别在一端系上红、白小球体的绳子各一根。

  学具:圆、直尺、小绳。

  【教学过程】

  1、导入新课。

  (1)认识圆的周长。

  教师出示一张正方形的纸片。提问:这是什么图形?它的周长指的是哪部分?它的周长和边长有什么关系?

  (师出示正方形的图形。)

  学生指着图形回答上述问题。

  生:这是一个正方形的图形,这四条边的长度的总和就是它的周长。周长是边长的4倍。

  教师当场把这张正方形的纸对折、再对折,以两条折线的交点为圆心画了一个最大的圆。提问:圆的周长指的是哪部分?谁能指一指。

  师:通过手摸正方形周长和圆的周长,你发现了什么?

  生:正方形的周长是由4条直直的线段组成的;圆的周长是一条封闭的曲线。

  老师请同学们闭眼睛想象,圆的周长展开后会出现一个什么图形呢?

  老师一边显示图象一边讲述:

  以这点为圆心,以这条线段为半径画圆。通过圆心并且两端都在圆上的线段叫做直径。现在将圆的周长展开,请观察出现了什么情况。

  圆的周长展开后变成了一条线段。

  (2)揭示课题。

  师:同学们认识了圆,知道了半径、直径和周长,学会了测量和计算圆的半径和直径,那么圆的周长能不能测量和计算呢?这节课我们就来一起研究圆的周长的计算。

  (板书课题:圆的周长计算)

  【评:为激发学生积极主动地学习圆周长的计算,教师注意了必要的复习铺垫,并引导学生研究正方形的周长与边长的关系,这就为学习圆的周长计算做好了知识上的准备和心理上的准备。渗透了要求圆的周长也需从研究圆周长与直径的关系入手】

  2、学习新知。

  (1)学生动手实验,测量圆的周长。

  全班同学分学习小组,分别测量手中三个大小不等的圆的周长。并报出测量后的数据。

  (学生测量圆的周长,并板书测量的结果。)

  师:你们是怎么测量出圆的周长的呢?

  生1:把圆放在直尺边上滚动一圈,这一圈的长度就是圆的周长。

  师:你是用滚动的方法测量出圆的周长。如果这里有一个很大的圆形水池,让你测量它的周长,能用这样的方法把圆形水池立起来滚动吗?

  (老师边说边做手势,同学们笑了。)

  生1:不能。

  师:还有什么别的方法测量圆的周长吗?

  生2:我用绳子在圆的周围绕一圈,再量一量绳子的长度,也就是圆的周长。

  教师轻轻地拿起一端拴有小白球的线绳,在空中旋转,使小白球滑过的轨迹形成一个圆。

  教师边演示边提问:要想求这个圆的周长,你还能用绳子绕一圈吗?

  生2:(不好意思地摇摇头)不能了。

  师:看来用滚动的方法或是绕绳的方法可以测量出一些圆的周长,但是实践证明是有局限性的。那么,今天我们能来能探索一种求圆的周长的普遍规律呢?

  【评:从滚动圆测量、绕圆周测量,到空中的小球所经的轨迹画出的圆不好测量,不断的设疑、激疑,导出要探索一种求圆周长的规律,使学生感到很有必要,诱发学生产生强烈的求知欲。】

  (2)根据实验结果,探索规律。

  教师将一端分别系上小球(一个白球、一个红球)的两条绳子同时在空中旋转,使两个小球经过的轨迹形成大小不同的两个圆。

  师:这两个圆有什么不同?

  生:两个圆的周长长短不同。

  师:圆的周长由什么决定的呢?

  生:是由老师手上的那条绳子决定的。绳子短,周长短;绳子长,周长长。

  师:请认真观察,(教师再演示)这条绳子是这个圆的什么?

  生:是这个圆的半径。

  师:半径和什么有关系?圆的周长又和什么有关系呢?

  生:半径和直径有关系。圆的周长和半径有关系,也就是和直径有关系。

  师:圆的周长和直径有什么关系呢?下面请同学们动手测量你手中那些圆的直径。

  (学生测量圆的直径)

  随着学生报数,教师板书:

  圆的周长圆的直径

  9厘米多一些3厘米

  31厘米多一些10厘米

  47厘米多一些15厘米

  教师请同学们观察、计算、讨论圆的周长和直径的关系。

  (学生讨论,教师行间指导、集中发言)

  生1:我发现这个小圆的周长是它的直径的3倍。

  师:整3倍吗?

  生1:不,3倍多一些。

  生2:我发现第二个圆的周长里包含着3个直径的长度,还多一点。

  生3:我发现第三个圆的周长也是它的直径的3倍多一些

  (板书:3倍多一些)

  师:同学们发现的这个规律是否具有普遍性呢?咱们一起来验证一下。

  滚动法验证:

  绳绕法验证:

  投影显示验证:

  直径:

  周长:

  师:同学们通过观察、操作、计算所发现的规律是正确的,是具有普遍性的。圆的周长是它的直径的3倍多一些,到底多多少呢?第一个发现这个规律的人是谁呢?

  投影出示祖冲之的画像并配乐朗诵。

  “早在一千四百多年以前,我国古代著名的数学家祖冲之,就精密地计算出圆的周长是它直径的3。1415926---3。1415927倍之间。这是当时世界上算得最精确的数值----圆周率。祖冲之的发现比外国科学家早一千多年,一千多年是一个何等漫长的时间啊!为了纪念他,前苏联科学家把月球上的一个环形山命名为祖冲之山。这是我们中华民族的骄傲)

  同学们的眼睛湿润了。教师很激动地对大家说:“同学们,你们今天正是走了一番当年科学家发现发明的道路,很有可能未来的科学家就在你们中间。努力吧,同学们!数学中还有许多未知项等待你们去发现、去探索。”

  教师继续讲到:刚才我们讲到了圆周率是什么?(引导学生看书)圆的周长总是直径长度的三倍多一些,这个倍数是个固定的数,我们把它叫做圆周率。

  (板书:圆周率)

  圆周率用字母π表示。π是一个无限不循环小数。计算时根据需要取它的近似值。一般取两位小数:3。14。

  师:如果知道了圆的半径或直径,你们能求出它的周长吗?这个字母公式会写吗?

  (学生独立思考、讨论、看书)

  板书公式:C=πd

  C=2πr

  【评:首先通过教师演示揭示圆周长有的长些、有的短些,然后引导学生观察、测量、计算、讨论圆周长与什么有关系?有怎样的关系?让学生充分感知,又反复加以验证,使学生对于圆周率的概念确信无疑。这一段教学设计符合儿童的认识规律,有利于教学重点的突出。结合认识圆周率对于学生进行热爱中华民族的教育,也是恰到好处的】

  3、反馈练习、加深理解。

  请同学们把开始测量的三个圆的周长用公式准确计算出来。

  (学生计算)

  师:通过用测量、计算两种不同的方法算出圆周长,你有什么发现?

  生:计算比测量要准确、方便、迅速。

  (1)根据条件,求下面各圆的周长(单位:分米)

  (学生计算,得出结果)

  师:为什么题目中给的数据都是10,可计算出的圆周长却不同呢?

  生:题目中给出的数据是10,但第一个图中的10表示直径,第二个图中的10表示半径。因此选择的计算公式就不同。给了直径,可直接和圆周率相乘,得出周长。给了半径,就要先乘2,再和圆周率相乘,得出周长。

  【评:教师注意运用比较的方法进行教学。给了两个数据,一个直径是10分米,一个半径是10分米,让学生计算后区分不同。这样可以弄清知识间的联系与区别,有利于揭示本质属性,能有效地促进知识技能的正迁移。】

  (2)判断正误。(出示反馈卡)

  ①圆周长是它的直径的3。14倍()

  ②圆周率就是圆周长除以它直径的商()

  ③C=2πr=πd()

  ④圆周率与直径的长短无关()

  ⑤π>3。14()

  ⑥半圆的周长就是圆周长的一半()

  一部分同学认为第⑥题是错误的。

  教师举起了表示半圆的模型,(如图)

  请判断失误的同学们亲自指一指半圆的周长。

  在操作中,同学们恍然大悟,发现半圆的周长

  比圆的周长的一半多了一条直径的长度。

  (3)抢答。直接说出各题的结果。(单位:厘米)

  ①d=1C=

  ②r=5C=

  ③C=6.28d=r=

  (同学们争先恐后地报出自己算出的答案)

  (4)运用新知识,解决实际问题。

  教师口述:在一个金色的秋天,我和同学们来到天坛公园秋游,一进门就看见一棵粗大的古树,我问大家:你们有什么办法可以测量到这棵大树截面的直径?当时张伟同学脱口而出:好办,把大树横着锯开,用直尺测量一下就可以了。

  同学们听了这个故事,摇摇头,表示不赞赏。

  一位同学站了起来:“张伟锯古树该罚款了。”

  教师补充了一句:“是啊,你们有什么比张伟更好的办法吗?”

  教室里热闹起来,同学们七嘴八舌地议论着……

  生1:“不用锯树,只要用绳子测量一下大树截面的周长,再除以圆周率就可以计算出大树截面的直径。”

  (同学们笑了,鼓起掌来,表示赞赏。)

  (四)课堂小结:

  师:这节课学习了什么?请打开书----看书。

  教师再一次请同学们观察黑板上贴着的三个圆,提出问题:“这三个圆什么在变,什么始终没变?”

  师:同学们通过圆的直径、周长变化的现象,看到了圆周率始终不变的实质。同学们能经常用这样的观点去观察和分析问题,会越来越聪明的。

  (板书:变----不变)

  师:下课的铃声就要响了,最后我留一个问题,请有兴趣的同学可以试一试。

  画一个周长是12.56厘米的圆。怎样画?

  【简评:这节课的设计体现以下几个特点:

  1、教学目的明确,能从知识、能力、思想品德教育三个方面综合考虑,明确、具体,教学过程很好地完成了教学要求。

  2、能深刻领会教材的编写意图,能准确地把握教材的重点和难点,知识的呈现过程层次清楚,能组织学生积极投入到获取知识的思维过程当中来。教学要求符合学生实际,环节紧凑,密度得当。

  3、教学方法既灵活多样又讲求实效。注意发挥教师的主导作用和学生的主体作用。教学程序设计比较精细,或由旧知识导入新知识,或教师演示直观教具,学生不止一次地操作学具,向学生提供丰富的感性材料,创设情境,并能适时地引导学生抽象概括,培养思维能力。整节课始终注意以教师的情和意,语言的生动、形象,富有逻辑性来吸引学生,注意让学生循序渐进地感知,不断完善学生的认知结构。

  4、能精心设问,问题能从多角度提出,正反向进行。问题提得准,导向性强,设问有开放性,语速恰当,给学生留有思考的时间。

  5、练习的安排计划性强,有针对性,先安排了一些巩固新知的基本练习,又安排了判断练习,口算练习,解决实际问题的练习。练习有层次,形式多样,学生愿意做、愿意学。安排操作性练习,能启发学生的创造,培养学生解决实际问题的能力。】

圆的周长拓展训练教学设计【实用6篇】

手机扫码分享

Top