鼎尖教案数学五年级上模板 篇一
数学是一门需要逻辑思维和数学概念掌握的学科,对于五年级的学生来说,他们已经开始接触到更加复杂的数学知识和问题。为了帮助他们更好地学习数学,我们设计了一份鼎尖教案数学五年级上模板,下面我们来详细介绍一下这份教案的内容。
教案的第一部分是知识导入,通过引入一个简单的问题或例子,让学生们对本节课要学习的内容有一个初步的了解。例如,在学习小数的时候,我们可以通过一个例子,让学生们思考如何将一个分数转化为小数。这样的导入可以激发学生的兴趣,使他们更加主动地参与到学习中来。
接下来是知识讲解,这一部分主要是教师对本节课的重点知识进行讲解和解释。教师可以通过举例、图表或者实物等方式来帮助学生们理解和掌握这些知识。同时,教师还可以利用一些趣味的教学方法,比如游戏或实践活动,来增加学生们对知识的兴趣和记忆。
然后是知识巩固,这一部分主要是通过练习题或者小组活动等方式来让学生们巩固所学的知识。教师可以设计一些有趣的题目,让学生们在解题的过程中不断巩固和运用所学的知识。同时,教师还可以组织学生们之间的合作,让他们共同解决问题,提高他们的团队合作能力。
最后是知识拓展,这一部分主要是通过拓展性练习或者延伸活动等方式来扩展学生们的数学思维和应用能力。教师可以设计一些开放性问题,让学生们发散思维,提出自己的解决方案。同时,教师还可以引导学生们运用所学的知识解决一些实际问题,提高他们的数学应用能力。
通过以上的教学设计,我们可以帮助五年级的学生们更加系统地学习数学知识,提高他们的数学思维和应用能力。这份鼎尖教案数学五年级上模板不仅能够帮助教师们有条理地进行教学,也能够激发学生们的学习兴趣,使他们在数学学习中取得更好的成绩。
鼎尖教案数学五年级上模板 篇二
作为五年级的数学教师,我们需要设计一份科学合理的教案,来帮助学生们更好地学习数学知识。下面是一份鼎尖教案数学五年级上模板,让我们一起来了解一下吧。
教案的第一部分是知识导入。在这个部分,我们需要通过一个简单的问题或者例子,引入本节课要学习的知识点,激发学生们的学习兴趣。例如,在学习图形的时候,我们可以通过一个有趣的问题,让学生们思考如何判断一个图形的面积大小。这样的导入能够帮助学生们更好地理解本节课的内容。
接下来是知识讲解。在这一部分,我们需要对本节课的重点知识进行讲解和解释。教师可以通过举例、图表或者实物等方式来帮助学生们理解和掌握这些知识。同时,教师还可以利用一些趣味的教学方法,比如游戏或实践活动,来增加学生们对知识的兴趣和记忆。
然后是知识巩固。在这一部分,我们需要设计一些练习题或者小组活动,让学生们巩固所学的知识。教师可以设计一些有趣的题目,让学生们在解题的过程中不断巩固和运用所学的知识。同时,教师还可以组织学生们之间的合作,让他们共同解决问题,提高他们的团队合作能力。
最后是知识拓展。在这一部分,我们需要设计一些拓展性练习或者延伸活动,来扩展学生们的数学思维和应用能力。教师可以设计一些开放性问题,让学生们发散思维,提出自己的解决方案。同时,教师还可以引导学生们运用所学的知识解决一些实际问题,提高他们的数学应用能力。
通过以上的教学设计,我们可以帮助五年级的学生们更好地学习数学知识,提高他们的数学思维和应用能力。这份鼎尖教案数学五年级上模板不仅能够帮助教师们有条理地进行教学,也能够激发学生们的学习兴趣,使他们在数学学习中取得更好的成绩。
鼎尖教案数学五年级上模板 篇三
对于教师而言,作业有利于教师了解教学效果,取得反馈信息,并及时对此进行调控,更有利于实现教学目标。今天小编在这里整理了一些鼎尖教案数学五年级上最新模板,我们一起来看看吧!
鼎尖教案数学五年级上最新模板1
教学目标:
1.使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。
2.使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。
教学重点:
理解分数与除法的关系
教学难点:
会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题
教具准备:
课件
教学过程:
一、导入
1.出示情境图:把4块饼平均分给4个小朋友。
2.提问:你能提出哪些问题?
二、新课
1.教学例6
把刚才呈现的题目改为:把3块饼平均分给4个小朋友。
提问:你能提出什么问题?怎样列式?
引导:把3块饼平均分给4个小朋友,平均每人能分到1块吗?你是怎样想的?
结合学生的回答,指出:每人分得的不满1块,结果可以用分数表示。
提出要求:那么,可以用怎样的分数表示3÷4的商呢?请大家拿出3张同样的圆形纸片,把它们看作3块饼,按照题目分一分,看结果是多少?
学生操作,了解学生是怎样分和怎样想的。
组织交流,你是怎么分的?
小结:把3块饼平均分给4个小朋友,每人分得4/3块。完成板书。
把题目改为:把3块饼平均分给5个小朋友,每人能分得多少块? 学生口述算式
提问:3除以5,商是多少?怎样用分数表示?小组交流。
2. 总结归纳
谈话:请大家观察上面两个等式,你发现分数与除法有什么关系?
板书课题 被除数÷除数=被除数/除数
提问:如果用a表示被除数,用b表示除数,这个关系式可以怎样写?
板书 a÷b=a/b
讨论:b可以是0吗?
3. 教学试一试。
出示试一试,学生尝试填空。
小组交流:你是怎样想的?
口答:把7分米改写成用米做单位的数,可以列怎样的除法算式?7÷10的商用分数怎样表示?23分改写成用时作单位的数,可以列怎样的除法算式?23÷60的商用分数怎样表示?
指出:两个数相除,得不到整数商时,可以用分数表示。
4. 做练一练的第1题 学生填写后,引导比较:上下两行题目有什么不同?
5. 练一练第2题 学生独立填写,要求说说填写时是怎样想的。
三、练习
1.练习八第1题
2.第2题
3.第3题学生看图填写后,可让学生说一说是怎样想的。
4.第4题
学生填写后,提问:这道题中的两个问题有什么不同?
5.第5题
让学生联系分数的意义填空,再引导学生根据分数与除法的关系列算式,并写出得数。
四、总结
提问:今天这节课,学习了什么内容?通过学习,有什么收获?还有哪些疑问?
鼎尖教案数学五年级上最新模板2
教学目标:
1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2. 根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
学习目标:
1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数
重点难点:
1、使学生理解分数的基本性质。
2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
过程设计:
一、激情导入
1、导入课题
生读故事。
唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?
师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?
2、明确目标
理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。
3、预期效果
达到教学目标
二、民主导学
任务一
任务呈现
动手操作 验证性质
自主学习
师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求
1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。
2、仔细观察三张纸的涂色部份,你们能发现什么?
师:同位分工合作完成。现在开始。
师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?
请二至三位同学说一说。
师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?
生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。
师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)
下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。
生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。
请二名同学重复。
师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母
同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。
请一至二名同学回答。
师板书:分数的分子分母同时乘 相同的数 ,分数的大小不变。
师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?
师: 这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?
请一同学回答,
生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。
师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?
生:分数的分子分母同时除以相同的数,分数的大小不变。 (二名学生重复)
师板书:或者除以
师:你能根据刚才总结的规律举一个例子吗?
让三名学生举出例子,师板书。并问:分子分母同时除以了几?
展示交流
师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)
生:不成立,
师:为什么
生:因为0不能作除数,
师:0不能作除数,所以这个式子是错误的。(画叉)
师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)
生:不成立,因为在分数当中分母相当于除数,除数不能为0。
师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话
生:0除外
师板书0除外
师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?
生:同时和相同的数
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)
师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。
生齐读二遍。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。
任务二
任务呈现
课本76页的例2,请一同学读题。
自主学习
生独立完成,完成后和同位的同学说一说你是怎样想的。
展示交流
每题请二名同学回答,(集体订正答案)
检测导结
1、目标练习
76页“做一做”
练习十四的1、2、6、7题
2、结果反馈
生做完后同桌交流,再指名说说结果。
3、反思总结
今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。
三、辅助设计
教具课件设计
小黑板 正方形纸数块
板书设计
分数的基本性质
练习和作业设计
1、完成课本76页做一做中的1、2题。
生独立完成,师指名回答。
2、完成练习十四中的1、2、5、6、7题。
师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。
鼎尖教案数学五年级上最新模板3
教学内容:
教材第122 、123 页的内容及第124 、125 页练习二十四的第1-3题。
教学目标:
1、使学生理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。
2、能根据数据的具体情况,选择适当的统计量表示数据的不同特征。
3、体会统计在生活中的广泛应用,从而明确学习目的,培养学习的兴趣。
重点难点:
1、重点:理解众数的含义,会求一组数据的众数。
2、弄清平均数、中位数与众数的区别,能根据统计量进行简单的预测或作出决策。
教具准备:
投影。
教学过程:
一、导入
提问:在统计中,我们已学习过哪些统计量?(学生回忆)指出:前面,我们已经对平均数、中位数等一些统计量有了一定的认识。今天,我们继续研究统计的有关知识。
二、教学实施
1、出示教材第122 页的例1 。
提问:你认为参赛队员身高是多少比较合适?
学生分组进行讨论,然后派代表发言,进行汇报。
学生会出现以下几种结论:
( 1)算出平均数是1 . 475 ,认为身高接近1 . 475m 的比较合适。
( 2)算出这组数据的中位数是1 . 485 ,身高接近1 . 485m 比较合适。
( 3)身高是1 . 52m 的人最多,所以身高是1 . 52m 左右比较合适。
2、老师指出:上面这组数据中,1 . 52 出现的次数最多,是这组数的众数。众数能够反映一组数据的集中情况。
3、提问:平均数、中位数和众数有什么联系与区别?
学生比较,并用自己的语言进行概括,交流。
老师总结并指出:描述一组数据的集中趋势,可以用平均数、中位数和众数,它们描述的角度和范围有所不同,在具体问题中,究竟采用哪种统计量来描述一组数据的集中趋势,要根据数据的特点及我们所关心的问题来确定。
4、指导学生完成教材第123 页的“做一做”。
学生独立完成,并结合生活经验谈一谈自己的建议。
5、完成教材第124 页练习二十四的第1 、2 、3 题。
学生独立计算平均数、中位数和众数,集体交流。
三、思维训练
小军对居民楼中8 户居民在一个星期内使用塑料袋的数量进行了抽样调查,情况如下表。
( 1)计算出8 户居民在一个星期内使用塑料袋数量的平均数、中位数和众数。(可以使用计算器)
( 2)根据他们使用塑料袋数量的情况,对楼中居民(共72 户)一个月内使用塑料袋的数量作出预测。
鼎尖教案数学五年级上最新模板4
教学内容:
教材19页内容,能被3整除的数的特征。
教学要求
使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。
教学重点:能被3整除的数的特征。
教学难点:会判断一个数能否被3整除
教学方法:
三疑三探教学模式
教具学具:
课件等。
教学过程
一、设疑自探(10分钟)
(一)基本练习
1、能被2、5整除的数有什么特征?
2、能同时被2 和5整除的数有什么特征?
(二)揭示课题
我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)
(三)让学生根据课题提问题。
教师:看到这个课题,你想提出什么问题?(教师对学生提出的问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)
(四)出示自探提示,组织学生自探。
自探提示:
自学课本19页内容,思考以下问题:
1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。
2、能被2、3整除的数有什么特征?
3、能被2、3、5整除的数有什么特征?
二、解疑合探(15分钟)
1、检查自探效果。
按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。
2、着重强调;
一个数各个数位上的数字之和能被3整除,这个数就能被3整除。
三、质疑再探(4分钟)
1、学生质疑。
教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?
2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)
四、运用拓展(11分钟)
(一)学生自编习题。
1、让学生根据本节所学知识,编一道习题。
2、展示学生高质量的自编习题,交流解答。
(二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。
1、判断下列各数能不能被3整除,为什么?
72 5679 518 90 1111 20373
2、58 115 207 210 45 1008
有因数3的数:( )
有因数2和3的数:( )
有因数3和5的数:( )
有因数2、3和5的数:( )
让学生说说怎么找的。
(三)全课总结。
1、学生谈学习收获。
教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。
2、教师归纳总结。
学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。
板书设计:
能被3整除的数的特征 一个数各个数位上的数字之和能被3整除,
这个数就能被3整除。
鼎尖教案数学五年级上最新模板5
教学目标
1、知识与技能
理解并熟记3的倍数的特征,能正确判断一个数是不是3的倍数,培养理解力和应用知识的能力。
2、过程与方法
经历自主实践、合作交流探究3的倍数的特征的过程,培养的探究能力和合作意识。
3、情感态度与价值观
感受数学知识探究的条理性,培养严谨的学习态度,体验合作的乐趣。
教学重难点
【教学重点】
3的倍数特征。
【教学难点】
探究3的倍数特征的过程。教学过程
教学过程
一、以旧引新,竞赛导入
1、请说出2的倍数的特征、5的倍数的特征。
2、下面各数哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数?
35 158 200 87 65 164 4122
既是2的倍数又是5的倍数的数有什么特征?
3、你能说出几个3的倍数吗?上面这些数中,哪些是3的倍数。你能迅速判断出来吗?
4、比一比。请学生任意报数,学生用计算器算,老师用口算,判断它是不是3的倍数。看谁的数度快!
5、设疑导入:你们想知道其中的奥秘吗?这节课就来学习3的倍数的特征。我相信:通过这节课的探索大家也一定能准确迅速地判断出一个数是不是3的倍数。(揭示课题)
二、猜想探索,归纳验证
1、大胆猜想:猜一猜3的倍数有什么特征?
(1)交流猜想。(有的说个位上是3、6、9的数是3的倍数,有的同学举出反例加以否定)
(2)整理认识。只观察个位上的数不能确定它是不是3的倍数,那么3的倍数到底有什么特征呢?
2、观察探索:出示第10页表格。
(1)圈一圈。上表中哪些是3的倍数,把它们圈起来。
(2)议一议。观察3的倍数,你有什么发现?把你的发现与同桌交流一下。(学生交流)
(3)全班交流。横着看圈起的前10个数,个位上的数字有什么规律?十位上的数字呢?判断一个数是不是3的倍数,只看个位行吗?
(4)问题启发:
大家再仔细看一看,3的倍数在表中排列有什么规律?
从上往下看,每条斜线上的数有什么规律?(个位数字依次减1,十位数字依次加1)
个位数字减1,十位数字加1组成的数与原来的数有什么相同的地方?(和相等)
每条斜线的数,各位上数字之和分别是多少,它们有什么共同特征?(各位上数字之和都是3的倍数。)
3、归纳概括:现在你能自己的话概括3的倍数有什么特征吗?
3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
4、验证结论
大家真了不起!自主探索发现了3的倍数的特征。但如果是三位数或更大的数,你们的发现还成立吗?请大家写几个更大的数试试看。
(1)尝试验证。(生写数,然后判断、交流、得出结论。)
(2)集体交流。
教师说一个数。如342,学生先用特征判断,再用计算器检验。
一个更大的数。4870599,学生先用特征判断,再用计算器检验。
5、巩固提高。