抽屉原理教学反思【通用6篇】

时间:2014-05-07 08:34:26
染雾
分享
WORD下载 PDF下载 投诉

抽屉原理教学反思 篇一

抽屉原理是一种常见的组合数学原理,可以帮助我们解决一些概率问题。然而,在教学过程中,我发现学生对抽屉原理的理解不够深入,容易出现困惑和错误的应用。因此,我对抽屉原理的教学进行了反思,希望能够改进教学方法,提高学生的理解和应用能力。

首先,我发现在教学中,我过于强调了抽屉原理的公式和应用方法,而忽视了其背后的数学思想。抽屉原理的核心思想是将物体放入抽屉中,如果物体的数量大于抽屉的数量,那么至少有一个抽屉中会有多个物体。我应该引导学生理解这一思想,而不仅仅是机械地记忆公式和应用方法。通过实际的例子和情境,让学生体会抽屉原理的本质,能够更好地理解和应用。

其次,在教学中,我发现学生对于问题的抽象能力较弱。抽屉原理通常用于解决一些概率问题,需要学生将具体的问题抽象为抽屉和物体的关系。然而,我发现学生在这一过程中容易迷失,无法准确地进行抽象和建模。因此,我认为在教学中应该更加注重培养学生的抽象思维能力。可以通过一些启发性的问题和练习,引导学生将具体问题抽象为抽屉和物体的关系,培养学生的逻辑思维和问题解决能力。

另外,我还发现在教学中,我没有充分利用好抽屉原理的应用场景。抽屉原理在实际生活中有很多应用,比如密码学、图论等领域。我应该引导学生了解这些应用场景,让他们意识到抽屉原理的重要性和实际价值。可以通过一些案例分析和实践活动,帮助学生将抽屉原理与实际问题相结合,提高他们的学习兴趣和动力。

综上所述,抽屉原理的教学需要注重培养学生的数学思维能力和抽象思维能力。通过引导学生深入理解抽屉原理的核心思想,培养他们的问题解决能力和应用能力。同时,要将抽屉原理与实际问题相结合,让学生认识到其重要性和实际价值。相信在改进教学方法的指导下,学生对抽屉原理的理解和应用能力将得到有效提高。

抽屉原理教学反思 篇二

抽屉原理是一种重要的组合数学原理,可以帮助我们解决一些概率问题。然而,在教学过程中,我发现学生对抽屉原理的理解存在一些困惑和误解。因此,我对抽屉原理的教学进行了反思,希望能够改进教学方法,提高学生的理解和应用能力。

首先,我发现学生对于抽屉原理的应用方法容易出现混淆和错误。抽屉原理通常用于解决一些概率问题,需要学生将具体的问题抽象为抽屉和物体的关系,然后应用抽屉原理的公式进行计算。然而,我发现学生容易将问题的抽象和计算过程混淆起来,导致错误的结果。因此,我认为在教学中应该更加强调问题的抽象和建模过程,让学生明确问题的核心和关键,然后再进行计算。可以通过一些具体的例子和练习,引导学生正确理解和应用抽屉原理的方法。

其次,在教学中,我发现学生对于抽屉原理的应用场景缺乏了解。抽屉原理在实际生活中有很多应用,比如密码学、图论等领域。然而,我发现学生对于这些应用场景了解甚少,无法将抽屉原理与实际问题相结合。因此,我认为在教学中应该更加注重引导学生了解抽屉原理的应用场景,让他们认识到其重要性和实际价值。可以通过一些案例分析和实践活动,让学生亲自体验抽屉原理在实际问题中的应用,提高他们的学习兴趣和动力。

另外,我还发现在教学中,我没有充分引导学生思考抽屉原理的数学思想。抽屉原理的核心思想是将物体放入抽屉中,如果物体的数量大于抽屉的数量,那么至少有一个抽屉中会有多个物体。这一思想可以帮助学生理解和应用抽屉原理。因此,我认为在教学中应该更加注重培养学生的数学思维能力,让他们能够从抽屉原理的数学思想出发,灵活地解决问题。可以通过一些启发性的问题和练习,引导学生思考抽屉原理的数学思想,培养学生的逻辑思维和问题解决能力。

综上所述,抽屉原理的教学需要注重学生对于应用方法的理解和掌握,培养他们的问题抽象和建模能力。同时,要让学生了解抽屉原理的应用场景,认识到其重要性和实际价值。另外,要引导学生思考抽屉原理的数学思想,培养他们的数学思维能力和问题解决能力。相信在改进教学方法的指导下,学生对抽屉原理的理解和应用能力将得到有效提高。

抽屉原理教学反思 篇三

  “抽屉原理”是开发智力,开阔视野的数学思维训练内容,对于一部分想象能力较弱的学生来说学起来存在一定的困难。通过本次课堂实践,有几点体会:

  1、创设情境,调动学生的学习积极性。课前让几个学生表演“抢椅子”的游戏:如3个人抢坐2把椅子、4个人抢坐3把椅子。让学生在活动中初步感知抽象的“抽屉原理”,理解“至少”的意思。

  2、合作交流,建立模型。根据课前的表演及老师的分苹果演示,交流、讨论理解:“待分物体数”、“抽屉数”、“至少数”分别指什么?“至少数”为什么是商加1,而不是商加余数?通过老师的提示、引领,学生对“抽屉原理”基本上能理解,但是要让学生用简练的语言表达出来还有一定的困难。

  3、培养学生的“模型”思想,提高解题能力。“抽屉原理”的问题变式很多,应用更具灵活性。能否将一个具体问题和“抽屉原理”联系起来,能否找出题中什么是“待分物体数”,什么是“抽屉”,是解题的关键。

有时候找到实际问题与“抽屉原理”之间的联系并不容易,即使找到了也很难确定用什么作“抽屉”。教学时,我不过于强调说理的严密性,只要学生能把大致意思说出来就行,有些题目能借助实物或用枚举法举例猜测、验证也可以。

  回顾整节课我觉得主要存在两个问题:

  1、在学生体验数学知识的产生过程中,老师担心学生不理解、走错路,不敢大胆放手,总是牵着学生的思路走。

  2、这部分内容属于思维训练的内容,有少部分学生学起来困难大,效果差。在课堂上如何更好地发挥学生的主体性,如何关注学困生的同步发展,我们将继续寻找方法。

抽屉原理教学反思 篇四

  抽屉原理是研究数学问题中关于一类与“存在性”有关的问题。这部分内容教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。

  成功之处:

  立足教材,深入挖掘,整合教材。在本节课中,介绍“抽屉原理”的两种形式。例题1描述的是最简单的“抽屉原理”:把m个物体任意分放进n个空抽屉里(m>n,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体,也就是当物体的数量比抽屉的数量多1时,不管怎么放,总有一个抽屉至少放进了2个物体。例题2描述了“抽屉原理”更为一般的形式:把多于kn个物体任意分放进n个空抽屉里(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体,也就是说当物体的数量比抽屉的数量多2,多3,多4,甚至更多时,不管怎么放,至少有(k+1)个物体放进了同一个抽屉里。根据这两种抽屉原理的形式,例题1采取了让学生通过动手操作,把4个球放进3个盒子里,有四种不同的分法:在第一种放法(4,0,0)中,让学生明确不管怎么放,总有一个盒子里有4个球,接着依次第二种、第三种、第四种放法中,让学生更清晰的理解“不管怎么放”“总有”这两个词语的意义。然后通过在每种放法中,在放得最多的球的盒子里,让学生明白其中存在着这样一种现象:不管怎么放,在放得最多的盒子里至少有2个球放进同一个盒子里。接着通过把5个球放进4个盒子里,把6个球放进5个盒子里,让学生体会当球的数量比盒子的数量多1时,不管怎么放,至少有2个球放进了同一个盒子里。

  不足之处:

  个别学生对于把谁作为抽屉数,把谁作为物体数不是特别清晰。

  再教设计:

  在总结时注意明确作为抽屉数和物体数的判断方法,然后根据具体的数量关系式就可以轻松解决问题。

抽屉原理教学反思 篇五

  学生的数学学习过程是一个以学生已有的知识和经验为基础的主动建构的过程,数学应强调从学生的生活经验出发,将教学活动置于真实的生活背景之中,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,体会到数学就在身边。这个游戏都是抽屉原理在生活中的运用,使生活问题数学化,数学教学生活化,让学生在数学学习中得到发展!活动化的数学课堂,使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。

  只有学生主动参与到学习活动中,才是有效的教学。在4个苹果放入3个抽屉学习中,充分利用学具操作,为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。这节课我能充分为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解抽屉原理。在教学过程中能够及时地去发现并认可学生思维中闪亮的火花。

  不足之处在于教学过程中应更多的关注学困生的思维活动,及时的给予认可和指导,使教学能够面向全体学生。

抽屉原理教学反思 篇六

  新课标指出“数学活动是师生共同参与、交往互动的过程。有效的数学教学活动是教师教与学生学的统一,学生是数学学习的主体,教师是数学学习的组织者与引导者。

  “数学广角”是人教版六年级下册第五单元的内容。在数学问题中,有一类与“存在性”有关的问题,这类问题依据的理论,我们称之为“抽屉原理”。关于这类问题,学生在现实生活中已积累了一定的感性经验。教学时可以充分利用学生的生活经验,放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流,在交流中引导学生对“枚举法”、“假设法”等方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题,发展学生的抽象思维能力。让学生通过本内容的学习,帮助学生加深理解,学会利用“抽屉问题”解决简单的实际问题。在此过程中,让学生初步经历“数学证明”的过程。实际上,通过“说理”的方式来理解“抽屉原理”的过程就是一种数学证明的雏形,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。还要注意培养学生的“模型”思想,这个过程是将具体问题“数学化”的过程,能从纷繁的现实素材中找出最本质的数学模型,是体现学生数学思维和能力的重要方面。

  在《抽屉原理》一课的教学中,我注意从学生已有的生活经验出发,让学生通过自主探索、积极参与,合作探究出抽屉原理有关知识。我在设计这节课时,结合本节课的特点,集趣味性与知识性为一体,充分发挥学生学习的主体性,激发学生学习数学的兴趣。下面,结合本节课的生成,我从以下三方面反思这节课的教学。

  一、目标的达成

  本节课我预设的三个学习目标是:

  1、借助学具,能用列举法说出“抽屉原理”的几种摆放方法。

  2、通过猜测、验证,会利用“平均分”的方法求出至少数。

  3、利用“抽屉原理”的知识,能解决生活中的实际问题。

  关于目标一,“借助学具,能用列举法说出‘抽屉原理’的几种摆放方法。”这一目标主要落实于教学环节二:动手操作,合作探究的任务一中,把4根小棒放进3个杯子里,可以怎么放,有几种不同的放法?让学生借助学具即杯子和小棒,通过小组交流,动手操作,结果记录到小组合作记录表上和组长的展示汇报,师生问答生生互动等方式来检测目标1的达成情况。课后我认真批改了学生的小组合作记录表,共20组,每一组都能在组长的带领下,把这四种摆法记录下来,且形式多样,有画图的,有用数字表示的,而且能找到每种方法中的最大数,同时也能很快写出结论:不管怎么放,总有一个杯子里至少有两根小棒。95%的小组填写完整。教师只作为引导者,我认为这一目标完成了,但还有些缺憾,比如小组合作时,气氛不够活跃,声音小等,课下我简单了解了一下情况,他们都说在这儿上课过于紧张,才造成的。关于目标二,“通过猜测、验证,会利用“平均分”的方法求出至少数。”这一目标主要落实于教学环节二:动手操作,合作探究的任务二、教学环节三:深入学习,揭示原理及教学环节四:应用原理解决问题。主要通过学生猜测——验证——总结这一主线完成的,还有师生之间的问答的情况及课后的试题纸笔测验,来检测这一目标的完成情况。上课时大部分同学能想到尽量平均分这一办法,但说理过程道理都懂,个别同学语言组织力有待提高,在总结至少数的方法上,同学们积极辩证、自主发现规律结合在课后的纸笔测验中80人中74人掌握良好,理由充分且有条理性,这一目标达成情况较好。有关目标三“利用‘抽屉原理’的知识,能解决生活中的实际问题。”这一目标是通过教学环节三深入学习揭示规律和环节四应用原理解决问题及课后的纸笔测验,大部分的同学能利用本节课所学的知识去解决生活中简单的抽屉问题,但个别同学对这一原理中的物体数和抽屉数认识模糊,因此这一目标基本达成。

  二、教学行为的有效性有效地教学行为可以促进目标的达成,在课堂上,本节课我设计的教学行为

  主要有以下几种:动手操作、小组合作探究、教师讲解、提问等。学习指导:指导学生归纳探究,总结概况及说理能力,在资源利用方面:动画课件直观演示。

  《数学课程标准》明确要求“使学生感受数学与现实生活的密切联系”,这是小学数学教学的基本任务,也是小学数学的指导思想和重要原则。这节课选取实际生活中的场景,从简单情况入手,运用直观教具,融小组合作探究、动手操作、以及观察、归纳、和概括为一体,引导学生的多种感官参与学习过程。初步感受抽屉原理的知识,理解“总有、至少”的含义,为下一步的猜测、验证、总结、应用奠定基础。为了防止小组合作学习流于形式,避免学生在活动时没有目的性,根本不知道自己该干什么。在小组合作前,我明确的提出了提出活动要求:四人小组合作,组内交流讨论,在组长的带领下,分工合作,并记录结果,展示汇报。通过探究,学生们很快就发现了这样一个问题,即至少数等于商加余数,这时教师提出质疑。并及时验证得出规律:至少数等于商加一。通过介绍抽屉原理的相关知识,开拓了学生的视野,丰富了学生的知识面,使学生了解了知识的来龙去脉,激发学生学习兴趣。而且能利用抽屉原理知识准确解答问题,前后呼应,借助规律来启动思维,使学生由被动接受知识转化为主动探索获取知识,让学生真正成为学习的主人,更加满足了他们心中研究者、探索者的强烈愿望。

  三、谈谈有无偏离自己的教案

  在教学实施过程中,基本上没有偏离自己的教案,在教学设计时预设的几个教学环节,在教师的引导下基本完成。但,在引导学生总结规律说出至少数方法时,我预设学生的答案是有两种情况,一是商加余数,一是商加一,但课堂生成学生只说出了商加余数这一种情况,叫了两位孩子都是这一种想法,于是我继续往下引导,那我们来验证一下咱的结论吧,通过出示5本书放进3个抽屉中,不管怎么放,总有一个抽屉中至少放进几本书?这时有学生说是2本,还有人说是3本,结果出现分歧,我随即问:谁来说说,理由呢?刘洋说是3本,原因是利用刚才的结论:商加余数即1加2等于3,当时胡小蝶的发言很好,她是这样说的:“先在每一个抽屉中放进一本书,剩下的两本书再第二次平均分到两个抽屉中,这样就保证总有一个抽屉中至少有2本书。”我随即问:“两本书放进一个抽屉中可以吗?”“可以,但这不是最少的情况,只是其中的一种情况。”我很好地抓住了这个生成,接着自然就引出了至少数等于商加一。另外,在揭示出原理后,本来还要对开始的抢凳子游戏联系这一原理做一回应,即数学源于生活,又还原于生活,但由于种种原因忽略了。最后,还剩两分钟时,我本意是指导学生看书,加深这节课所学知识的理解,由于口误却说成了自学课本。以后,我应注意自身语言的严密性。教师的引导语不够到位,导致学生思维只局限于表面,没有进行深层次的挖掘。

  课后,自己反复观看课堂实录,认真反思了自身的不足之处:新课标指出:实施评价,应注意教师的评价,学生的自评,生与生的互评相结合,在本节课教学中,我过于注重教师的评价没有进行多元化的评价相结合。教学语言不够简洁,激励性语言不够丰富,课堂气氛不够活跃,教学机智有待进一步提高。

  总之,在以后的教学中,结合教学内容要精心备学生,备教学内容,让数学课堂成为擦出学生思维火花的课堂。使自己的课堂设计符合学生的认知规律,有利于学生的学习,有利于学生的成长。非常感谢我们年级组五位老师的指导。

  我的困惑:高年级怎样调动学生的学习积极性?

抽屉原理教学反思【通用6篇】

手机扫码分享

Top