初中数学正负数教案【精简6篇】

时间:2012-06-07 05:44:40
染雾
分享
WORD下载 PDF下载 投诉

初中数学正负数教案 篇一

教学目标:

1. 学生能够理解正负数的概念,并能够正确运用正负数进行加减运算。

2. 学生能够解决与正负数有关的实际问题。

3. 学生能够灵活运用正负数进行数轴表示和比较大小。

4. 学生能够理解正数与负数的乘法及除法运算规则。

教学重点:

1. 正负数的概念及运算规则。

2. 正负数在数轴上的表示和比较大小。

3. 正数与负数的乘法及除法运算规则。

教学过程:

一、导入新知

1. 引入正负数的概念,通过生活中的例子让学生理解正负数的含义。

2. 让学生观察数轴的特点,引导学生认识数轴上的正负数。

二、正负数的加减运算

1. 通过实例演示正负数的加减运算,引导学生理解运算规则。

2. 让学生通过练习题巩固正负数的加减运算技巧。

三、正负数在数轴上的表示和比较大小

1. 引导学生利用数轴表示正负数,并让学生通过比较大小来理解正负数的大小关系。

2. 通过练习题让学生熟练掌握正负数在数轴上的表示和比较大小。

四、正数与负数的乘法及除法运算规则

1. 通过实例演示正数与负数的乘法及除法运算规则,引导学生理解运算规律。

2. 让学生通过练习题巩固正数与负数的乘法及除法运算技巧。

五、实际问题的解决

1. 引导学生应用正负数进行实际问题的解决,加深学生对正负数的理解和运用能力。

2. 通过实际问题的解决,让学生体会到正负数在生活中的实际应用价值。

六、课堂小结

1. 对本节课的重点知识进行总结回顾,强化学生的记忆。

2. 检查学生的学习情况,对学生的学习成果进行评价。

初中数学正负数教案 篇二

教学目标:

1. 学生能够理解正数与负数的相反数的概念,并能够正确运用相反数进行数轴表示和比较大小。

2. 学生能够解决与相反数有关的实际问题。

3. 学生能够灵活运用相反数进行加减运算。

4. 学生能够理解相反数的乘法及除法运算规则。

教学重点:

1. 正数与负数的相反数的概念及运算规则。

2. 正数与负数的相反数在数轴上的表示和比较大小。

3. 正数与负数的相反数的加减运算规则。

4. 正数与负数的相反数的乘法及除法运算规则。

教学过程:

一、导入新知

1. 复习上节课的内容,引导学生回顾正负数的概念及运算规则。

2. 引入正数与负数的相反数的概念,通过实例让学生理解相反数的含义。

二、相反数的表示和比较大小

1. 引导学生利用数轴表示正数与负数的相反数,并让学生通过比较大小来理解相反数的大小关系。

2. 通过练习题让学生熟练掌握正数与负数的相反数在数轴上的表示和比较大小。

三、相反数的加减运算

1. 通过实例演示正数与负数的相反数的加减运算规则,引导学生理解运算规律。

2. 让学生通过练习题巩固正数与负数的相反数的加减运算技巧。

四、相反数的乘法及除法运算规则

1. 通过实例演示正数与负数的相反数的乘法及除法运算规则,引导学生理解运算规律。

2. 让学生通过练习题巩固正数与负数的相反数的乘法及除法运算技巧。

五、实际问题的解决

1. 引导学生应用相反数进行实际问题的解决,加深学生对相反数的理解和运用能力。

2. 通过实际问题的解决,让学生体会到相反数在生活中的实际应用价值。

六、课堂小结

1. 对本节课的重点知识进行总结回顾,强化学生的记忆。

2. 检查学生的学习情况,对学生的学习成果进行评价。

初中数学正负数教案 篇三

〔教学目标〕

1、了解负数的产生是生活、生产的需要;

2、掌握正、负数的概念和表示方法,理解数0表示的量的意义;

3、理解具有相反意义的量的含义;

4、熟练地运用正、负数描述现实世界具有相反意义的量;

5、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力。

〔重点难点〕

正确理解正、负数的概念,数0表示的量的意义和具有相反意义的量是重点,正确理解负数、数0表示的量的意义是难点。用正、负数表示生活中具有相反意义的量是重点,正、负数概念的综合运用是难点。

〔教学过程〕

一、负数的引入

我们知道,数产生于人们实际生产和生活的需要。[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数。

在生活、生产、科研中经常遇到数的表示与数的运算的问题。

[投影]1.北京冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?

2.有三个队参加的足球比赛中,红队胜黄队(4︰1),黄队胜蓝队(1︰0),蓝队胜红队(1︰0),三个队的净胜球分别是2,-2,0,如何确定排名顺序?

3.20____年我国产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里的增长-2.7%代表什么意思?

上面三个问题中,哪些数的形式与以前学习的数有区别?

数-3、-2、-2.7%与以前学习的数有区别。-3表示零下3摄氏度,-2是由2-4得到的,表示净输2个球,-2.7%表示减少2.7%,而3表示零上3摄氏度,2表示净赢2个球,2.7%表示增长2.7%。

像3、2、2.7%这样大于零的数叫做正数;像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数。根据需要,有时在正数前面也加上“+”(正)号,例如,+3、+2、+0.5、+1/3,?就是3、2、0.5、1/3,?。

这样,一个数由两部分组成,数前面的“+”“-”号叫做它的符号,后面的部分叫做这个数的绝对值。

请你指出数-3.2,5,-2/3的符号和绝对值。

二、对数“0”的重新认识

大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么0是什么数呢?数0既不是正数,也不是负数,它是正数和负数的分界。

我们知道,0表示没有,它仅仅表示没有吗?实际上它还可以表示一个确定的量。如今天气温是零度,是指一个确定的温度;海拔0表示海平面的平均高度。

0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量。

三、用正负数表示相反意义的量

把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的高度。例如:珠穆朗玛峰的海拔高度为8844米,吐鲁番盆地的海拔高度为-155米。又如记录账目时,通常用正数表示收入款额,负数表示支出款额。

请大家看课本第3面的图1.1-2、1.1-3。

你能解释上面图中正数和负数的含义吗?

图1.1-2中的4600表示A地高于海平面4600米,-100表示B地低于海平面100米;图1.1-3中的2300表示存入2300元,-1800表示支出1800元。

你能再举一些用正负数表示数量的实际例子吗?

通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量,等等。

四、巩固练习

初中数学正负数教案 篇四

【教学目标】

1、会判断一个数是正数还是负数,理解负数的意义。

2、会把已知数在数轴上表示,能说出已知点所表示的数。

3、了解数轴的原点、正方向、单位长度,能画出数轴。

4、会比较数轴上数的大小。

【知识讲解】

一、本讲主要学习内容

1、负数的意义及表示 2、零的位置和地位

3、有理数的分类 4、数轴概念及三要素

5、数轴上数与点的对应关系 6、数轴上数的比较大小

其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。负数的'意义是难点。

下面概述一下这六点的主要内容

1、负数的意义及表示

把大于0的数叫正数如5,3,+3等。在正数前加上“-”号的数叫做负数如-5,-3,- 等。负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。

2、零的位置和地位

零既不是正数,也不是负数,但它是自然数。它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。

初中数学正负数教案 篇五

一、教材分析

1.教学目标、重点、难点.

教学目标:

(1)通过实例,感受引入负数的必要性.

(2)了解正数、负数的概念.

(3)会区分两种不同意义的量,会用正负数表示具有相反意义的量.

重点:理解相反意义的量,理解负数的意义.

难点:正确区分两种相反意义的量,并会用正负数表示.

2.例、习题的意图

通过补充的引例,复习回顾上一学段学习过的数的类型,归纳出我们已经学习了整数和分数,然后通过观察、分析P3的几幅画和图表所列举出的一些实际生活中的具有相反意义的量,让学生感受引入负数的必要性.通过分析正、负数与以前学过的整数和分数的区别与联系,进而归纳出正、负数的概念.

例1为P5练习1,设置目的是强化学生对正、负数表示形式的理解.让学生准确的认识和区分正数与负数。

在学生对正、负数的概念与表示形式掌握的基础上,补充例2.例2是明确了哪一种意义的量用正数表示,则与其相反意义的量用负数表示.让学生进一步掌握如何用正、负数表示相反意义的数量.并理解相反意义与数量的含义.进而利用课本P5观察让学生认识正、负数表示实际生活中的数量的意义和必要性。

补充例3是例2的延续,在不明确哪一种意义的量用正数表示的情况下,让学生表示相反意义的量.通过例3的学习,训练学生发现生活中的具有相反意义的数量,理解、体会正、负意义的相对性,并恰当的用正、负数表示.培养学生的发散思维.

补充例4则是对例3正、负数表示相反

意义的量的加强,通过训练,让学生说出正、负数所表示的实际意义,进一步培养学生正、负数的应用能力,逐步提升正、负数相对性和相反性的理解。

习题的设置是针对例题掌握情况的检查.教科书p5练习(2)、(3)、(4)是针对例2而设置的。补充练习1检查学生对相反意义与数量的理解.补充练习2是对例3的掌握情况的检查。

3.认知难点与突破方法:

对于相反意义及数量含义的理解,以及区分两种不同意义的量是本课的难点.在教学中注意思维的层次,首先要让学生明确数量指的是具体事物的多少.再分析是否是同一类事物,在是同类事物的基础上确定是否是相反关系。强化学生分析的层次性.在操作上,通过大量实际生活材料的分析和例2的学习让学生对相反意义及数量含义建立一定的感性认识,教师及时的给予适当的归纳,让学生建立初步的理性认识,最后通过练习1的判断对错进一步强化巩固对概念的理解。

用正、负数表示具有相反意义的过程中体现的正与负的相对性是另一个难点,通过例3的教学,鼓励学生发散思维,多角度认识具有相反意义的量,进而让学生认识正、负的相对性,通过例4的教学强化进一步强化对正、负的相对性的理解。

二、新课引入

通过回顾小学学过的数的类型,归纳出我们已经学了整数和分数,然后举一些生活中具有相反意义的量,说明为了表示相反意义的量,我们需要引入负数.强调数学的严密性.

教师举例:今天我们已经是七年级的学生了,我是你们的数学老师,下面我自我介绍一下,我的名字是_________,身高1.71米,体重75.5千克,今年32岁,我们班有50名学生,其中男生23人,占全班总人数的46%,女生26人占总人数的53%.

问题1:老师在刚才的介绍中出现了几个数?分别是什么?试将这些数按以前学过的分类方法分类.学生思考、交流后教师总结:整数和分数两类。

问题2:生活中,仅有整数和分数就够用了吗?

引例:学生观察前面的几幅画中用到了什么数,让学生感受引入负数的必要性.讨论这些带有符号的数在实际中表示什么意义?

在学生交流的基础上教师归纳总结:以前学的数已经不够用了,在实际生活中我们需要引进一些新的数,只有这样才能更好的表示生活实际中数量关系。

三、例题讲解

教师引导学生通过观察上例中出现的这些数与以前学过的数的区别,进而归纳出正负数的概念。

补充例1:(1)下各数哪些是正数,哪些是负数?

-1,2.5,0,-3.14,,120,-1.732

正数前面的+号通常省略.了解正负数形式上的区别(符号不同),形成中的联系(在以前学习的非0整数和分数前加上符号)

问题3:在整数前加上-号后这个数还是整数吗?在分数前加上-号后这个数还是分数吗?使学生对正整数、正分数、负整数、负分数有初步的了解.

(2)指出(1)中的分数、整数.(为有理数的学习做铺垫)

问题4:为什么要引出负数?通常在日常生活中我们用正数和负数分别表示怎样的量?学生回答问题.(用正负数表示相反意义的数量)

补充例2:用正、负数表式下列各量。

(1)若把上升5m记作+5m,那么下降5m记作。

(2)某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈表示为

(3)向南走5000米记作-5000米,那么向北走8000米记作。

学会用正、负数表示具有相反意义的量,相反意义的量包含两个要素:一是意义相反.如向东的反向是向西,上升与下降,收入与支出.二是他们都是数量.

练习思考书P5观察,在此基础上让学生指出生活中具有相反意义的例子.(检查学生对相反意义的数量的理解程度。

补充例3:用适当的数值表示下列实际问题的数量.

(1)某地白天的温度是30℃,午夜的温度是零下10℃.

(2)某出租车在东西走向的大街上向东行驶3km,又向西行驶了5km.

(3)一商店在一小时内收入200元,又支出150元。

(4)甲公司本月的销售额增长13%,乙公司本月的销售额下降了2.9%

本例题是一发散性问题,没有规定哪种意义的量用正数表示,所以先要指明哪种意义的量用正数表示,其相反意义的量用负数表示.在解题中鼓励学生的不同思维.比如:若收入200元,记作:-200元,则支出150元记作+150元.反之,若收入200元,记作:+200元,则支出150元记作-150元.进一步加深对正、负数相反性及相对性的理解.同时要明确,通常情况下,零上、增长、收入用正数表示,零下、减少、支出用负数表示。

补充例4:解释下列各语句中表示各数量的数值的实际意义。

(1)七月份的物价比六月份增长了25%,八月份比七月份增长了-2.3%。

(2)经过绿化,我国沙漠化土地每年增长-4.5%。

(3)某仓库上午入库货物-3500t。

(4)缆车上升了-78米。

(5)小红这次考试分数比上次增加了+2分。

(6)盈利-300元.

分析:强调负数表示的是与其具有相反关系的量.(1)降低2.3%,(2)降低4.5%,(3)出库3500t,(4)下降78米,(5)增加了2分,(6)亏损300元.

四、课堂练习:

1.P5练习(2)、(3)、(4)

补充练习2:判断下列说法对错:

A.向南走-60米表示向西走60米()

B.节约50元与浪费-30元是互为相反意义的量()

C.快与慢表示具有相反意义的量()

D.+15米就是表示向东走15米()

E.黑色与白色表示具有相反意义的量()

F.向北4.5米和向南8米是具有相反意义的量()

补充练习3:用正负数表示下列具有相反意义的量。

(1)温度上升3℃和下降5℃.

(2)盈利5万元和亏损8千元.

(3)运进50箱与运出100箱.

(4)向东10米与向西6米.

五、课后练习

1.课本P7第1、2、3.

六、补充练习:

2.下面各数哪些是正数?哪些是负数?

5,+1,0.07,-1.414,1.98%,0,-20%,-1000,11/9,0.001

3.如果一个物体沿东西方向运动,若规定向西为负,向东为正,

(1)向东运动5米和向西运动10米各怎样表示?

(2)-30米和50米各表示什么?(3)物体原地不动怎样表示?

4.说出下列每句话的意义.

(1)小明在围棋比赛中输了-5盘.(2)今晚的气温升高了-3℃.

(3)电梯下降了-4层.(4)李华体重增加了-2公斤

初中数学正负数教案 篇六

学习目标

1、了解负数是从实际需要中产生 的;

2、能判断一个数是正数还是负数,理解数0表示的量的意义;

3、会用正负数表示实际问题中具有相反意义的量。

重点难点

重点:正、负数的概念,具有相反意义的量。

难点:理解负数的概念和数0表示的量的意义。

教学流程

师生活动 时间 复备标注

一、导入新课

我先向同学们做个自我介绍,我姓 ,大家可 以叫我 老师,身高 米,体重 千克,今年 岁,教 龄是年龄的 ,我将和同学们一起度过三年的初中学习生活.

老师刚才的介绍中出现了一些数,它们是些什么数呢?

[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数. 所以,数产生于人们实际生产和生活的 需要.

在生活中,仅有整数和分数够用了吗?

二、新授

1、自学章前图、第2 页,回答下列问题

数-3,3,2,-2,0,1.8%, -2.7%,这些数中 ,哪 些数与以前学习的数不同?

什么是正数,什么是负数?

归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+ 1/3,…,就是2、0.5、1/3,….

这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.

如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.

2、自学第23页,回答下列问题

大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么 0是什么数呢?

0有什么意义?

归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界。

0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量。

3、用正负数表示具有相反意义的量:自学课本34页

有哪些相反意义的量?

请举出你所知道的相反意义的量?

“相反意义的量”有什么特征?

归纳小结:一是意义相反,二是有数量,而且是同类量。

完成3页练习

4、例题

自学例题,完成 归纳。寻找问题。

完成4页练习

三、课堂达标练习

课本第5页练习1、2、3、4、7、8.

四、课堂小结

1、到目前为止,我们学习的数有哪几种?

2、什么是正数、负数?零仅仅表示“没有”吗?

3、正数和负数起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用

初中数学正负数教案【精简6篇】

手机扫码分享

Top