《能被3整除的数的特征》优秀教案【通用6篇】

时间:2015-02-04 05:30:50
染雾
分享
WORD下载 PDF下载 投诉

《能被3整除的数的特征》优秀教案 篇一

第一篇内容

标题:探索能被3整除的数的特征

导语:能被3整除的数具有一些特征,通过本节课的学习,学生将会探索并深入理解这些特征,从而更好地理解整数的性质和规律。

一、学习目标

1. 理解能被3整除的数的定义和特征;

2. 掌握判断一个数能否被3整除的方法;

3. 运用所学知识解决实际问题。

二、学习重点

1. 能被3整除的数的特征;

2. 判断一个数能否被3整除的方法。

三、学习内容和过程

1. 导入新知识:通过引导学生思考和举例子,帮助他们理解什么是能被3整除的数。

2. 探索特征:引导学生观察一些能被3整除的数,并总结它们的特征。例如,个位数是0、3、6、9的数都能被3整除。

3. 判断方法:教授判断一个数能否被3整除的方法。例如,如果一个数各位上的数字之和能被3整除,那么这个数就能被3整除。

4. 练习应用:设计一些练习题,让学生运用所学知识判断一些数能否被3整除,并解答一些相关问题。

四、巩固与拓展

1. 小组合作:将学生分成小组,让他们互相出题并答题,加深对能被3整除的数的理解。

2. 拓展应用:设计一些拓展题,让学生运用所学知识解决一些实际问题,如购买零食时,判断能否用3的整数倍付款。

五、课堂总结

通过本节课的学习,我们了解了能被3整除的数的特征,并掌握了判断一个数能否被3整除的方法。这些知识将有助于我们更好地理解整数的性质和规律。

《能被3整除的数的特征》优秀教案 篇二

第二篇内容

标题:应用能被3整除的数的特征解决问题

导语:能被3整除的数的特征在解决一些实际问题时非常有用。通过本节课的学习,学生将学会如何应用这些特征来解决一些数学问题。

一、学习目标

1. 熟练掌握能被3整除的数的特征;

2. 运用所学知识解决实际问题;

3. 培养学生的数学思维和解决问题的能力。

二、学习重点

1. 应用能被3整除的数的特征解决问题;

2. 培养数学思维和解决问题的能力。

三、学习内容和过程

1. 复习特征:通过回顾上节课学习的内容,复习能被3整除的数的特征。

2. 解决问题:设计一些实际问题,让学生运用所学知识解决。例如,小明买了一些书,每本书的价格是30元,他一共花了多少钱?通过判断30是否能被3整除,学生可以快速得出答案。

3. 拓展应用:设计一些更复杂的问题,让学生进行拓展应用。例如,某商品的价格是45元,小红想买3个,她需要支付多少钱?通过判断45是否能被3整除,学生可以确定需要支付的金额。

四、巩固与拓展

1. 小组竞赛:将学生分成小组,设计一些竞赛题目,让他们通过应用能被3整除的数的特征解答问题,并比较答案的正确性和速度。

2. 拓展应用:让学生自己设计一些实际问题,并交换答题,互相验证答案的正确性。

五、课堂总结

通过本节课的学习,我们学会了如何应用能被3整除的数的特征来解决实际问题。这些知识不仅能够帮助我们更好地理解整数的性质和规律,还能培养我们的数学思维和解决问题的能力。

《能被3整除的数的特征》优秀教案 篇三

  教学目标

  1. 使学生通过观察、猜想、比较、验证等一系列数学活动,自主探索并掌握能被3整除的数的特征。

  2. 使学生在具体的探索活动中,培养自主探索的意识,发展初步的推理能力。

  3. 使学生在参与学习活动的过程中,体验成功的喜悦,增强学习数学的兴趣。

  教学准备

  学号卡片,计算器,小棒等。

  教学过程

  一、 对比中产生困惑

  出示:按要求在下面的□里填上合适的数。

  (1) 3□ 能被2整除;能被5整除;能被3整除。

  (2) 2□ 能被3整除。

  (3) 1□ 能被3整除。

  学生回答后,引导思考:看一个数能不能被2、5整除,主要是看这个数的个位,你能从个位上发现能被3整除的数的特征吗?

  揭示课题:怎样判断一个数能不能被3整除呢?这就是我们今天要研究的问题。(板书:能被3整除的数的特征)

  【说明:学生已经掌握了能被2或5整除的数的特征,在研究能被3整除的数的特征时,会很自然地想到“看个位上的数”。这里正是把学生的已有知识经验作为教学资源,巧妙地通过对比引起学生的思维冲突,促使学生自觉克服思维定势的负面影响,激发学生强烈的探究欲望。】

  二、 排列中感受奇妙

  1. 谈话:我们班有55个同学,课前每个同学都准备了一张写有自己学号的卡片,请大家判断一下,自己的学号数能否被3整除。(稍停,让学生完成判断)请学号数能被3整除的同学,把自己的学号卡片贴在黑板的左边,不能被3整除的,把卡片贴在黑板的右边。

  2. 抽取黑板左边能被3整除的12和21。

  (1) 谈话:比较这两个数,你能发现什么有趣的现象?(数字相同,数字排列的顺序不同)

  (2) 提问:在左边能被3整除的数中,像这样的数还有哪几组?请把它们一组一组地排列起来。(15、51;24、42;45、54)

  (3) 提问:在右边不能被3整除的数中,也有这样的数,你能把它们一组一组地排列起来吗?(13、31;14、41;23、32;25、52、34、43;35、53)

  3. 提问:你能用自己的语言描述这样的现象吗?(一个能被3整除的数,改变数字的顺序后,仍然能被3整除;一个不能被3整除的数,改变数字的顺序后,仍然不能被3整除)

  4. 提问:由此我们可以推想,能被3整除的数的特征和什么有关?(和一个数各位上的数字有关,和数字的排列顺序没有关系)

  【说明:以学生熟悉的学号数为研究新知识的素材,易于调动学生的学习兴趣。教师引导学生通过观察、比较、排列等具体的活动,自主地发现“有趣”的现象,体会“能被3整除的数的特征”与一个数各位上的数字密切相关,明确了进一步探究的方向。】

  三、 操作中发现规律

  1. 活动一:每个同学手中都有一些小棒和一张数位表,先请同学们拿出其中的3根小棒,在数位表上摆一个两位数或三位数,如用3根小棒摆两位数:

  把摆出的数填在下面的表中:

  小棒的根数

  摆出的根数

  能被3整除

  不能被3整除

  学生完成操作并填写表格。

  反馈:你摆了哪些数?(根据学生回答,填表)这些数能被3整除吗?(在表格里画“√”)

  追问:用3根小棒能摆出一个不能被3整除的数吗?

  让认为能摆出一个不能被3整除的数的同学自己在下面摆一摆。

  2. 活动二:再请同学们拿出5根小棒,在数位表上摆一个两位数或三位数,看摆出的数能不能被3整除。

  学生操作并填写表格。

  反馈:用5根小棒摆出的数能被3整除吗?

  追问:用5根小棒能摆出一个能被3整除的数吗?

  3. 活动三:请同学们自己选择小棒的根数摆一摆,把结果填在表格里,并和小组里的同学说一说,从摆小棒的活动中,你发现了什么。

  学生活动,并在小组里交流。

  反馈:你分别是用几根小棒摆的?结果怎样?你发现了什么?(如果小棒的根数能被3整除,摆出的数就一定能被3整除;如果小棒的根数不能被3整除,摆出的数就不能被3整除……)

  4. 提问:通过刚才的活动,我们发现能被3整除的数的一些特点,你能归纳一下,能被3整除的数有什么特征吗?(一个数各位上数的和能被3整除,这个数就能被3整除)

  【说明:本环节安排了三次摆小棒的活动,前两次活动主要是引导学生初步体会如果小棒的根数能被3整除,摆出的数一定能被3整数;如果小棒的根数不能被3整除,摆出的数就不能被3整除。第三次活动通过学生自主地操作、观察、比较、交流,进一步丰富前两次活动得出的结论,促使学生主动地发现规律。】

  四、 练习中提升认识

  谈话:我们已经知道能被3整除的数的特征,你能运用这一规律解决一些简单问题吗?

  1. 完成第47页的练一练。

  让学生说一说怎样判断每一个数能不能被3整除。

  2. 完成练习八第6题。

  让学生说一说方框里可以填几,为什么。逐步要求学生不重复、不遗漏地填出方框里的数。

  五、 课堂总结

  1. 提问:通过今天的学习,你有什么收获?

  2. 延伸:为什么判断一个数能否被2、5整除,只有看它的个位,而判断一个数能否被3整除,却要看这个数各个数位上的数字的和呢?请同学们课后到网上或图书馆去查阅资料,进行研究。

《能被3整除的数的特征》优秀教案 篇四

  教学内容:

  人教版九年义务教育六年制小学数学第十册

  教学目标:

  1、知识目标:掌握能被3整除的数的特征。

  2、技能目标:能运用“能被3整除的数”的特征判断一个数能否被3整除。

  3、情感目标:培养学生自主探索的能力,合作学习的品质。让学生感受

  生活中蕴藏着丰富的数学知识。

  教学重点、难点:

  探索“能被3整除的数”的特征

  教具准备: 多媒体课件

  教学过程:

  (一)

  师:刚才吉老师给同学们上了一节数学课,同学们在课堂上表现的特别棒!我也想给同学们上一节数学课,你们欢迎吗?

  生:……

  师:吉老师领大家做了报数游戏,现在我也领大家做一个报数游戏。你们愿意吗?

  生:……

  师:好,现在我们从第一排第一个同学开始报数,报数的要求是:第一个同学从3开始报数,第二个同学要在第一个同学报的数上加3,第三个同学要在第二个同学报的数上加3,依次类推,第一排最后一位同学报完后,第二排的第一位同学要接着往下报,第二排最后一位同学报完后,第三排的第一位同学要接着往下报,一直报到最后。听懂了吗?

  生:……

  师:想一想,第一位同学从3开始报数,第二位同学应该报几?第三位同学呢?

  生:……

  师:报数的时候,其他同学要注意听,同时想一想自己应该报几。并要记住自己的号码。现在开始:报数!

  生:……

  师:记住你们的号码了吗?

  生:……

  师:再报一遍!

  生:……

  师:游戏做到这里。上课!

  生:……

  师:同学们好!请坐!我们刚学过能被2、5整除的数的特征。现在请你们用3、4、5三个数字组成一个能被2整除的三位数。

  生:……

  师:为什么要把4放在个位上?

  生:……

  师:同样还用3、4、5三个数,组成能被5整除的三位数。

  生:……

  师:你是怎么想的?

  生:……

  师:判断一个数是否能被2或者5整除,只要看这个数的哪一位?

  生:……

  师:我们知道了能被2或者5整除的数的特征,请同学们大胆猜想一下,能被3整除的数是否也有特征呢?

  生:……

  师:有什么特征呢?

  生:……

  师:好,这就是我们这节课要研究的内容。(板书:能被3整除的数的特征)

  师:请同学们看大屏幕:(屏幕出示)

  3 6 9 12 15 18 21 24 27 30 33 36 39 42

  45 48 51 54 57 60 63 66 69 72 75 78 81

  84 87 90 93 96 99 102 105 108 111 114 117

  120 123 126 129 132 135 138 141 144 147 150

  师:这就是我们刚才报数游戏时同学们的号码。这些数都是3的倍数,都能被3整除,观察这些能被3整除的数,个位上有什么特点?

  生:……

  师:你从一个数的个位上能判断出这个数能被3整除吗?

  生:……

  师:那该怎么办呢?(学生猜想规律)请看大屏幕(屏幕出示)

  12—21 24—42 48—84 36—63

  师:你发现每组的两个数有什么联系?(追问)

  生:……

  师:你从大屏幕找出这样的例子吗?

  生:……(找)

  师:这些数把每个数的各位数字调换位置,它们仍然能被3整除。这说明能被3整除的数与组成这个数的数字无关。那么到底与什么有关呢?请同学们小组讨论,共同探讨一下。

  生:……

  师:讨论完了吗?哪个小组先来汇报?

  生:……

  师:回答的真好!其他小组同意他们的意见吗?

  生:……

  师:请同学们在大屏幕上任选一个数字,看看刚才的同学发现的是不是真理。

  生:……

  师:我们刚才发现的规律对于两位数、三位数是适用的,那么对于四位数、五位数是不是也适用呢?请看大屏幕(屏幕出示)

  3246 5709 3428331

  师:请同学们计算一下。这三个能被3整除的数各个数位的和是不是能被3整除?

  生:……

  师:看来同学们发现的规律确实很有道理。谁能把自己的发现用一句话叙述一下?

  生:……

  师:(谁能比他说的更完整)

  师:对,一个数的各位上的数的和能被3整除,这个数就能被3整除。板书:(…)

  小结:以后判断一个数能不能被3整除,只要把这个数的个位上的数加起来,看看和能不能被3整除,就知道了。

  师:出示卡片:417,这个数能不能被3整除?

  生:……

  师:我现在把这个数的位置颠倒一下,出示:147。猜想一下老师下面会出什么数字?

  生:……

  师:猜对了。你说的这些数字能不能被3整除?你是怎么想的?

  生:……(鼓励)

  师:还记得我们课前做的游戏吗?看看你们忘没忘记你们的号码。现在我们继续做报数游戏,从3开始报数!

  生:……

  师:是偶数的同学站起来。请报一下你们的号码。

  生:……

  师:你们的号码能被2和3同时整除吗?

  生:……

  师:为什么?

  生:……

  师:真聪明!请坐!

  师:我们已经初步掌握了能被3整除的数的特征。你们想不想做几道题检验一下自己学习的情况。

  生:……

  屏幕出示:

  1、填适当的数使它能被3整除。

  12□ 7□ 3□0 40□

  □26 578□ □8 3□3

  2、你今年11岁,再过几年,你的岁数能被3整除?

  师:好了,通过检验,使我们对能同时被5和3整除的数的特征,认识的更深刻了。咱们再来做个练习,这里有5个数字,请你用这些数字组成同时能被2、3、5整除的三位数(每个数字在一个数里只能用一次),我只给20秒,看谁组的多、请写在本上,开始。

  生:

  师:时间到,有人组了三个,有人组了四个,最多的组了八个。我请一位组的最多的同学来说一说。

  生:120,210;150,510;240,420;450,540。

  师:对不对?

  生:……

  师:通过这节课的学习,你有什么收获?你对自己在课堂的表现满意吗?

  生:……

  师:这节课同学们的表现真棒,真高兴认识你们,谢谢同学们的合作!下课!

  附板书设计:

  能被3整除数的特征

  一个数的各位上的数的和能被3整除,这个数就能被3整除。

《能被3整除的数的特征》优秀教案 篇五

  教学要求:

使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。

  教学重点:

能被3整除的数的特征。

  教学难点:

会判断一个数能否被3整除。

  教学过程:

  一、创设情境

  1、能被2、5整除的数有什么特征?

  2、能同时被2和5整除的数有什么特征?

  二、揭示课题

  我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?现在我们就来学习和研究能被3整除的数的特征(板书课题)

  三、探索研究

  1、小组合作学习---能被3整除的数的特征。

  (1)思考并回答:①什么样的数能被3整除?②要想研究能被3整除的数的特征,应该怎样做?

  (2)做法是:(根据学生说的逐一板书)

  ①②观察:③特征

  ×3(分组讨论,说发现的规律)一个数的各位上的数

  13把各位上的数加起来看和有什么特征。的和能被3整除,这

  26个数就能被3整除。

  39

  412

  515

  618

  721

  824

  (3)检验:由学生和老师任意报一个较大的数让学生检验观察它的特征。如:8057921。

  因为:8+0+5+7+9+2+1=323+2=55为能被3整除,所以8057921不能被3整除,8057921÷3=2685940......1。

  四、课堂实践

  1、做教材第55页下面的“做一做”。

  2、做练习十二的第5题。

  3、做练习十二的第6题。

  4、做练习十二的第8题。

  ①让学生明确这个图所表示的就是判断一个数能否被3整除的顺序和方法。

  ②让学生按这个顺序和方法判断上面的3个数。

  五、课堂小结

  学生小结今天学习的内容。

  六、思考练习

  做练习十二的第7题。

《能被3整除的数的特征》优秀教案 篇六

  教学内容:

  能被3整除的数的特征(《现代小学数学》第八册)。

  教学目标:

  1.使学生掌握能被3整除的数的特征,并能运用特征进行正确的判断;

  2.培养学生的观察分析能力和逻辑思维能力;

  教学重点:

  认识并掌握能被3整除的数的特征。

  教学难点:

  通过概括能被3整除的数的特征掌握一定的数学思想和方法。

  教具学具:

  投影片、纸黑板、数字卡、作业纸

  教学过程:

  一、复检:

  1.前面找们已经学习了能被2、5整除的数的特征,谁来分别说一说?

  2.你能说出几个能被3整除的数吗?(板书其中两个45、234)

  3.能被3整除的数有什么特征呢?这就是我们今天要研究的内容。(板书课题)

  二、新授:

  1.质疑引入

  刚才同学们口算验证了234能被3整除,老师根据这个数可以写出许多个能被3整除的数(板书243、324、342、423、432、2043、)。你们想知道老师有什么窍门吗?下面我们一起来研究。

  2.引导观察

  (1)9能被3整除吗? 3|9

  9的2倍能被3整除吗? 板书 3|(92)

  9的3倍能被3整除吗? 3|(93)

  由此,你想到了什么? 贴纸黑板 (9的倍数都能被3整除)①

  (2)9与18的和能被3整除吗? 3|(9+18)

  18与27的和能被3整除吗? 板书 3|(18+27)

  36与90的和能被3整除吗?3|(36+90)

  由此,你又想到了什么?贴纸黑板

  (每个加数能被3整除,它们的和也能被3整除)②

  (3)下面研究整十、整百数与9的关系。

  由此,你推想到了什么?

  (几十=几个9+几) (几百=几十几个9+几)③

《能被3整除的数的特征》优秀教案【通用6篇】

手机扫码分享

Top