数学教学设计 篇一
标题:探索三角函数的概念与应用
引言:
在数学教学中,三角函数是一个重要的概念,涉及到许多实际应用。本文将介绍一种探索性的教学设计,旨在帮助学生深入理解三角函数的概念及其应用。
主体:
1. 引入三角函数的概念:
首先,通过引导学生观察直角三角形的特性,引入正弦、余弦和正切的概念。可以使用实际的例子,如测量建筑物高度或航海中的角度测量,来说明三角函数的重要性和应用场景。
2. 探索三角函数的性质:
在学生理解三角函数的概念后,可以进行一系列的探索活动来帮助他们发现三角函数的性质。例如,让学生寻找正弦函数和余弦函数的周期性、对称性等特点,并与图像进行对比分析。通过这种方式,学生可以更好地理解三角函数的特性及其数学表示。
3. 应用三角函数解决实际问题:
为了提高学生对三角函数的应用能力,设计一些实际问题,如测量高楼倾斜角度、计算船只航行距离等。通过这些问题,学生可以将所学的概念与实际问题相结合,提高问题解决能力和数学思维能力。
4. 深入探讨三角函数的扩展概念:
一旦学生掌握了基本的三角函数概念和应用,可以引入更高阶的概念,如反三角函数和三角恒等式。通过解决一些复杂的问题,学生可以进一步拓展对三角函数的理解和应用。
结论:
通过这种探索性的教学设计,学生可以更加深入地理解三角函数的概念及其应用。同时,这种设计也可以培养学生的问题解决能力、数学思维能力和实际应用能力。希望通过这样的教学设计,能够激发学生对数学的兴趣和学习的动力。
数学教学设计 篇二
标题:以游戏方式探索概率与统计
引言:
概率与统计是数学中的重要分支,也是日常生活中常用到的概念。本文将介绍一种以游戏方式进行的教学设计,旨在帮助学生更加深入地理解概率与统计的概念和应用。
主体:
1. 游戏引入概率与统计的概念:
设计一个有趣的游戏,要求学生做出一系列选择,并记录下相应的结果。通过这个游戏,学生可以直观地感受到概率与统计的概念,如事件发生的可能性、样本空间、频率等。
2. 探索概率与统计的规律:
在学生理解概率与统计的基本概念后,引导学生进行一系列的探索活动,如投掷骰子、抽取彩球等。通过这些活动,学生可以发现并验证一些概率与统计的规律,如大数定律、期望值等。
3. 应用概率与统计解决实际问题:
设计一些与实际生活相关的问题,如抽奖概率、样本调查等,让学生运用所学的概率与统计知识解决问题。通过这样的应用活动,学生可以将理论知识与实际问题相结合,提高问题解决能力和数学思维能力。
4. 进一步拓展概率与统计的应用:
一旦学生掌握了基本的概率与统计概念和应用,可以引入更高阶的概念和方法,如条件概率、贝叶斯定理等。通过解决一些复杂的问题,学生可以进一步拓展对概率与统计的理解和应用。
结论:
通过以游戏方式进行的教学设计,学生可以更加深入地理解概率与统计的概念及其应用。同时,这种设计也可以培养学生的问题解决能力、数学思维能力和实际应用能力。希望通过这样的教学设计,能够激发学生对数学的兴趣和学习的动力。
数学教学设计 篇三
教学目标:
1、知识与技能:使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2、过程与方法:使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3、情感态度与价值观:使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:
初步认识正数和负数以及读法和写法。
理解0既不是正数,也不是负数。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①
向上看(向下看)
②向前走200米(向后走200米)
③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄氏度(零下10摄氏度)。
3、谈话:老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、示例
1、认识温度计,理解用正负数来表示零上和零下的温度。
看教材:首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。
了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个 4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
②北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。
3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
2、我们观察课本上珠穆朗玛峰的海拔图,从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平。
面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据,我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、 4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
六、课堂小结
七、布置作业
数学教学设计 篇四
教学目标:
1、认识扇形统汁图的特点和作用,能从扇形统汁图读出必要的信息,为决策服务。
2、结合教学渗透理想主义教育,引导学生养成良好的生活、学习习惯,使学生感受统计的意义和作用。
3、通过对数据的科学分析,培养学生逻辑推理、抽象概括的能力。
教学重点:
认识扇形统汁图,能从扇形统汁图读出必要的信息。
教学难点:
结合统汁图正确进行数据分析,为决策服务。
教学过程:
一、提出学习目标
1、创设情境,导入新课
师:同学们,在校运会中我们班好多学生都报名参加了自己喜欢的体育项目,有的同学也取得了很好的成绩,大家都来说一说自己最喜欢什么体育项目呢?班长来统计一下
生1:我喜欢跳绳。
生2:我喜欢足球。
生3:我喜欢打乒乓球。
生4:我喜欢短跑。
……
师:刚才班长已经把你们喜欢的体育项目都记下来了,那我们可以对这些原始数据做何处理呢?
生1:制成统计表
生2:制成条形统计图
……
师:大家说得非常好,我们今天再来学习一种新的统计图——扇形统汁图,大家想从中学会些什么呢?
2、提出学习目标
(1)认识扇形统汁图的特点和作用。
(2)从扇形统汁图能读出什么样的信息。
二、展示学习成果
1、小组内个人展示
学生独立自学教科书第106~107页上的内容和做一做(教师相机进行指导,收集学生的学习信息,特别是引导小组内学生之间的交流与探讨)
完成后在小组内按学困生——中等生——优生的顺序进行展示,小组内互相交流、帮助、质疑问难
2.全班展示(以小组为单位)
(1)汇报扇形统汁图的特点和作用。
(2)从扇形统汁图能读出什么样的信息?
(生自由说)
(3)牛奶中的数学问题。
看图,并计算出,每天喝一袋250克的牛奶,能补充营养成分各多少克?
(4)错例展示。
(每一小组在展示过程中,其它小组均能进行质疑。)
三、激发知识冲突
边展示边引发知识的冲突,让学生更深层次的进行思考:
1.针对同学的展示,学生自由质疑问难。
2.教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的展示有什么想法与建议吗?
四、拓展知识外延
1、生活中的数学。
(1)、 练习二十五第1题:自主看图,说一说李明同学一天的作息安排是否合理,从中你能提出哪些合理化建议。(引导学生说说怎样安排时间才合理,才能做到劳逸结合)
(2)、 练习二十五第2题:自主看图,说一说从图中得到哪些信息,在小组内交流。(使学生体会到父母的辛苦和对自己的爱,激发学生对父母、对家庭的爱)
2、小小统计员
(1)统计自己家中每月的生活费支出情况,根据所学知识试着制作成扇形统汁图。
(2)进行数据分析,为家庭开支的使用提出合理化建议。
数学教学设计 篇五
教学目标:
1、使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。
2、通过练习,巩固对正比例意义的认识。
3、情感、态度与价值观:初步渗透函数思想。
重点难点:
能根据数量关系式或图象判断两种量是否成正比例。
教学准备:
投影仪。
教学过程:
一、新课讲授
教学第46页内容。
教师出示表格(见书),依据表中的数据描点。(见书)
师:从图中你发现了什么?
生:这些点都在同一条直线上。
看图回答问题
①如果铅笔的数量是7支,那么铅笔的总价是多少?②总价是4.0的铅笔,数量是多少?③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?
你还能提出什么问题?有什么体会?
组织学生分小组汇报,学生汇报时可能会说出
①正比例关系的图象是一条经过原点的直线。
②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。
二、练习讲授
1、基本练习。
(1)投影出示教材第49页第1题。
教师引导学生回顾正比例的意义及判断是否成正比例的方法。学生独立完成练习。
教师要求学生从两个方面说明为什么成正比例。a.电是随着用电量的增加而增加;b.电费与用电量的比值总是相等的。
师生共同订正。
(2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km……
①出示下表,填表。
一列火车行驶的时间和路程
②填表并思考发现了什么?
③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量)
④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。
⑤用式子表示它们的关系: 路程÷时间 =速度(一定)。
教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。
2、指导练习。
(1)完成教材第49页第2题。
(2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第(1)小题时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。
(3)解决教材49页第4题:①投影出示书中的表格,引导学生观察表中的数据。
②组织学生在小组中合作探究。a.动手画一画,指名汇报图象特点。b.组织学生说一说,相互交流。
提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。
三、课堂作业
1、根据x和y成正比例关系,填写表中的空格。
2、看图回答问题。
(1)在这一过程中,哪个量没变?
(2)路程和时间有什么关系?
(3)不计算,从图中看出4小时行驶多少千米?
(4)7小时行驶多少千米?
课堂小结:
教师:判断两个相关联的量成正比例的三个要素是什么?
通过这节课的学习,你有什么收获?
课后作业:
完成练习册中本课时的练习。
板书设计:
正比例图像
图像:一条过原点的直线。
数学教学设计 篇六
教学目的
1.使学生在具体的情境中感知口算在实际中的作用,培养学生的数学应用意识。
2.通过观察、比较,发现并掌握一个因数是整百数的乘法口算,并能够正确地进行计算。
教学过程
一、创设情境,引发情感
二、探究新知
把整百数看成几个百,和另一个因数相乘,得多少个百,在得数后面添上两个0。
三、尝试练习
整百数的乘法口算和整十数的乘法口算有什么异同点?
四、分层练习
练习十一的第1-3题。
五、作业:
练习十一的第4、5题。