《圆锥的体积》教学设计 篇一
标题:探索圆锥的体积公式
导入:引用现实生活中使用圆锥的例子,如冰淇淋蛋筒、喷泉水柱等,让学生了解圆锥的形状和应用。
1. 目标:让学生了解并掌握计算圆锥体积的方法。
2. 学习步骤:
a. 引导学生观察圆锥的形状特点,并讨论圆锥的定义和性质。
b. 通过实物圆锥模型,让学生测量底面半径和垂直高,并引导他们思考如何计算圆锥的体积。
c. 引导学生通过试验法探索圆锥体积的公式,并进行验证。
d. 讲解圆锥体积的公式V=1/3πr2h,解释公式中各个参数的含义。
e. 练习题:给出一些圆锥的底面半径和高,让学生计算其体积,并相互核对答案。
3. 拓展应用:
a. 挑战问题:给出一个封闭容器的形状,让学生通过计算圆锥的体积来确定容器的容积。
b. 实际问题:引导学生思考如何计算圆锥的体积在工程领域中的应用,如计算建筑物的斜塔体积等。
4. 总结:复习圆锥的定义和性质,以及计算圆锥体积的公式,并强调应用的重要性。
《圆锥的体积》教学设计 篇二
标题:动手实践,探索圆锥体积公式
导入:通过展示一些实际生活中使用圆锥的例子,如喷泉、灯塔等,激发学生的兴趣和思考。
1. 目标:让学生通过动手实践,探索圆锥体积的公式。
2. 学习步骤:
a. 引导学生观察圆锥的形状特点,并提问如何计算圆锥的体积。
b. 分组实践:每个小组分发一张纸板和一段绳子,让学生制作一个圆锥模型。
c. 引导学生测量模型的底面半径和垂直高,并记录下来。
d. 让学生用纸板剪成一个扇形,然后将其卷成一个圆锥,用胶带固定。
e. 引导学生用水或沙子等物质填充自己制作的圆锥,测量填充后的高度,并记录下来。
f. 让学生计算自己制作的圆锥的体积,并相互核对答案。
3. 结果分析:引导学生讨论不同组制作的圆锥体积是否相等,以及与理论公式是否接近。
4. 理论公式:讲解圆锥体积的公式V=1/3πr2h,解释公式中各个参数的含义。
5. 拓展应用:
a. 建设性任务:让学生设计一个能够容纳一定体积的圆锥容器,并计算所需的底面半径和高度。
b. 实际问题:引导学生思考如何应用圆锥的体积公式来解决实际问题,如设计水族箱的底座等。
6. 总结:通过动手实践,学生深入理解圆锥体积的公式,并能够应用于实际问题中。同时,培养学生的动手能力和团队合作精神。
《圆锥的体积》教学设计 篇三
一、教学内容:
义务教育课程标准实验教科书(人教版版)六年级下册第33~34页。
二、
教学目标:
1、知识技能目标:
通过实验探究,发现圆锥和圆柱体积之间的关系,理解和掌握圆锥体积的计算方法。
使学生会应用公式计算圆锥的体积并解决一些实际问题。
2、思维能力目标:
提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。
3、情感态度目标:
使学生在经历中获得成功的体验,体验数学与生活的联系。
三、教学重点、难点:
重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题
难点:探索圆锥体积的计算方法和推导过程。
四、教具准备:
1、多媒体课件。
2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。
五、教学过程:
(一)创设情境,导入新课
投影出示圆锥形小麦堆。
师:看,小麦堆得像小山一样,小麦丰收了。张小虎和爷爷笑得合不拢嘴。这时,爷爷用竹子量了量麦堆的高和底面的直径,出了个难题要考考小虎:你能算出这堆小麦大约有多少立方米吗?
这下可难住了小虎,因为他只学了圆柱的体积计算,圆锥的体积怎么计算还没有学,怎么办?今天我们就一起来探究圆锥体积的计算方法。
【设计意图】通过学习感兴趣的情境,巧妙至疑,激发学生的学习欲望。
(二)互动新授
1、提出问题。
教师:我们已经会计算圆柱的体积,如何计算圆锥的体积呢? 根据学生的各种猜想,教师进一步引导学生思考,我们学过那些图形的体积计算?圆锥的体积与那种图形的体积有关? 进一步观察、比较、猜测。教师举起圆柱、圆锥教具,把圆锥体套在透明的圆柱体里,让学生想想它们的体积之间会有什么关系?
学生可能会猜测:圆柱的体积可能是圆锥的2倍,3倍,4倍或其他。
2、实验探究。
(1)教师布置实验任务。
出示教材例2.
① 从准备好的圆柱、圆锥体容器中找出等底、等高的圆柱和圆锥体容器来。
② 用倒水的方法量一量等底、等高的圆柱体积和圆锥体积之间的关系。
布置实验要求:各组根据需要选用实验用具,小组成员分工合作,轮流操作,做好实验数据的收集整理。(每组发一张实验记录单)
(2)开展实验探究。
①
② 实验研究。
教师巡视指导。
学生一边实验,一边收集整理数据,完成实验记录单。
(3)分析数据,作出判断。
① 各组说说各种实验结果。
② 观察分析数据,你发现了什么?
(发现大多数情况下,圆柱能装下三个圆锥的水,也有两次或四次等不同的结果)
③ 进一步观察分析,什么情况下圆柱刚好能装下三个圆锥的水?
(各组互相观察各组的圆柱圆锥,发现只要是等底等高,圆柱的体积都是圆锥体积的3倍,也就是说在等底等高的情况下,圆柱体积是圆锥体积的3倍。)
④ 是不是所有符合等底等高条件的圆柱、圆锥都具备这样的关系呢?(教师用标准教具装水实验一次)
(4)总结结论
结论1:圆锥的体积V等于和它等底等高圆柱体积的三分之一。 结论2: 圆柱的体积V等于和它等底等高的圆锥体积的3倍。
3、启发引导 推导公式
师:对于同学们得出的结论,你能否用数学公式来表示呢? 生:因为圆柱的体积计算公式V=sh;所以我们可以用1/3 sh表示圆锥的体积。
师:其他同学呢?你们认为这个同学的方法可以吗? 生:可以。
师:那我们就用1/3 sh表示圆锥的体积。
计算公式:V= 1/3 sh
师: (1)这里Sh表示什么?为什么要乘1/3?
(2)要求圆锥体积需要知道哪两个条件? 学生回答,师做总结
4、简单应用 尝试解答
例1:(课件出示教材情景图)在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1.5米。你能计算出小麦堆的体积吗?
(学生独立列式计算全班交流)
(三)巩固练习,运用拓展
1、试一试
一个圆锥形零件,它的底面直径是10厘米,高是3厘米,这个零件的体积是多少立方厘米?
2、练一练
计算下面各圆锥的体积:
3、实践性练习
《圆锥的体积》教学设计 篇四
一、教案背景
1.面向学生:小学
2.学科:数学 人教 六年级 下学期
3.课时:1
二、教学课题
本课是人教版数学六年级下学期《圆柱与圆锥》单元的内容。本节课安排了两个例题:一是圆锥体积公式的推导,二是圆锥体积公式的应用。圆锥体积公式的推导按引出问题---联想、猜测---实验探究---导出公式,四个层次编排。圆锥体积的计算,题目给出了圆锥形沙堆的底面直径和高,求沙堆的体积。通过这个例子的教学,使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。
学习本课需要达成以下的目标:
1.理解和掌握圆锥体积的计算方法,并能运用公式解决简单实际问题。
2.经历“类比猜想---验证推理”探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并能解决一些简单的实际问题。
3.培养学生动手操作、观察分析的能力,在探究中体验学习的乐趣。
三、教材分析
本节内容圆锥的体积是在学生学习了圆柱的体积及圆锥的认识之后,学习的又一个求立体图形体积的内容,是学校阶段学习的最后一个解决“空间与图形”问题的内容,也是前阶段所学知识发展与升华。
教材安排了例2、例3两个例题,例2引导学生推导出圆锥的体积,例3让学生用圆锥的体积公式解决问题。
本课重点在于圆锥体积公式的推导。鉴于圆柱与圆锥体积的关联,学生在圆柱体积公式推导学习中也领悟到新旧知识转化的特点,因此对于圆锥体积公式的推导仍可以采用转化的方式将圆锥体积与圆柱体积联系起来,通过实验操作来得出计算公式,再辅以及时的运用训练,以使学生理解圆锥体积的计算方法。
从教材的编排可以看出,教材加强了与现实生活的联系,加强了在操作中对空间与图形的思考,使学生在经历观察、猜测、实验、推理等过程中理解和掌握圆锥体积的计算方法,进一步发展空间观念。
四、学情分析:
学生是九山小学,属农村的学生。
美国心理学家奥苏泊尔说:“如果我不得不把教育心理学还原为一条原理的话,影响学习的最主要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。”通过前几节课的学习,学生已经对圆柱、圆锥的基本特征和各部分的名称有了清楚的认识,知道了圆柱体积的计算方法,并能运用圆柱体积的计算公式解决具体问题,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。推导圆锥的体积时,学生分组操作,借助倒沙子的实验,亲身感受到等底等高的圆柱与圆锥之间的3倍关系。但是他们不易发现圆柱与圆锥体积之间不具备3倍关系的前提,可借助体积关系不是3倍的实验器材,引导学生经历由表及里,层层逼近的过程,进行深度的信息加工。
教学重点:掌握圆锥体积的计算公式。
教学难点:圆锥体积公式的推导过程。
教具、学具:准备若干同样的圆柱形容器,若干与圆柱等底等高和不等底不等高的圆锥形容器,沙子,课件。
五、教学方法及流程
启发式、自主、合作、探究式。
本课流程如下:
1.教师演示,激发学生的求知欲。
2.探究新问题。
3.通过实验,解决新问题,寻求真理。
4.归纳总结圆锥的体积公式。
5.运用公式解决问题,培养实践能力。
六、教学步骤:
【学生课前准备】:
课前,让学生通过百度搜索圆锥的有关知识。
课前展示,汇报。
【复习导入】
1.复习准备
提问:上节课我们学习了圆柱的体积,怎样计算圆柱的体积呢?
2.揭示课题
这节课我们学习圆锥的体积。(板书:圆锥的体积)。猜测一下,圆锥的体积 与我们已学过的那个物体的体积有关系呢?圆锥的体积与圆柱的体积之间是怎样的关系呢?这节课我们我们就用圆柱与圆锥体积之间的关系,推导出圆锥的体积公式。
【探究新知】
推导圆锥体积的计算公式(例2)
1.教师演示,激发学生的求知欲
(1)出示铅锤,向学生说明:这是一个铅锤,近似于圆锥的形状,铅锤所占空间的大小就是铅锤的体积。
幻灯片出示铅锤
提出问题:怎样求出铅锤的体积?
学生回答后说明:刚才我们所说的办法是前面我们所学的求不规则物体体积的方法。
(2)教师演示:用一大一小两个透明圆柱容器,大圆柱
是空的,小圆柱容器里装有适量的细沙,将小圆柱里细沙慢慢倒入大圆柱中,形成一个底面相等的沙堆,让学生思考:怎样求出这个圆锥的体积。学生回答后问:上述两种方法你有什么评价?
2.探究新问题
出示圆锥形的小麦堆,问:你能用上面两种方法求出它的体积吗?使学生明确上述方法不适用于解决此类问题,有局限性。要发现一种解决此类问题的普遍方法。
3.通过实验,解决问题
首先让学生明确实验目的:用过实验得到圆锥的体积公式。让学生拿出准备好的实验材料:圆柱、圆锥、细沙。
出示实验记录单,使学生明确记录单的内容,然后按记录单的要求开始实验,并填写记录单。
实验一:感知圆锥体与圆柱体的内在联系,推导圆锥的体积公式。
等底等高的圆柱圆锥各一个,若干细沙。把空圆锥里装满细沙,倒入空圆柱里,注意观察倒的次数。(倒三次正好倒满)
学生发现:只要圆柱与圆锥等底等高,结论是一样的,那就是倒三次正好把圆柱容器倒满。
实验二:进一步实践,加深印象,拓展知识
用“等底不等高”“等高不等底”“不等底不等高”的两个圆柱、圆锥进行实验,学生发现:不能得到上述结论。
3.学生实验后填写实验报告,归纳总结圆锥的体积公式。
为了加深学生理解,用视频展示用等底等高的圆柱和圆锥实验的过程。
统一结论:圆锥的体积等于和它等底等高的圆柱体积的三分之一
Sh 用字母表示:V= 1 / 3sh
4. 26页例3
出示例3图片
让学生审题,明确要求沙堆体积,知道底面直径和高,不能直接套公式,要先求出底面积,再用公式计算。为了便于学生理解,课件出示例3及解题过程。
【运用公式解决问题】
1.填空题。
(1)175.36立方米。
(2)一个圆锥的体积是141.3立方厘米,与它等底等高的圆柱的体积是()立方厘米。
学生独立思考后指名回答。
2.现在我们可以根据圆锥的体积公式计算出铅锤的体积了。需要知道什么条件呢?
出示:
(1)底面积:12.56平方厘米 高:3厘米
(2)底面半径:2厘米 高:3厘米
(3)底面直径:4厘米 高:3厘米
让学生从三个条件中任选一个进行计算。指一生板演,结合板演订正。订正时告诉学生:计算时结合数据的特点,可以用乘法交换律和结合律进行计算,使计算简便。
3.出示:在打谷场上,有一个近似于圆锥形的。测得它
的底面直径:20米,高12米。已知每立方米小麦重735千克。这堆小麦的重量是多少?
启发学生想:要求麦堆的重量,必须先求什么?如何求出圆锥形麦堆的体积?求出麦堆的体积后,怎样求它的重量?
4. 判断下面的说法是不是正确。
(1)圆锥的体积等于圆柱体积的三分之一。
(2)圆柱的体积大于与它等底等高的圆锥的体积。
(3)圆锥的高是圆柱的高的3倍,它们的体积一定相等。
指名学生回答。第(3)题使学生明确:不知道圆柱与圆锥的关系时,不能判断它们的体积。
【课堂总结】
同学们,这节课我们学习了圆锥体积的计算,说一说你有什么收获。现在你能计算圆锥的体积吗?
【板书设计】
圆锥的体积
圆锥的体积=
等底等高V =1/3Sh
= 1/3 ×底面积×高
教学反思:
一、找准教学起点
教学的成效如何,取决于教师对教学内容的把握和对学生学习情况的了解程度,求“圆锥的体积”是建立在已学“圆柱体积”的基础上进行教学的,本节课就是让学生利用等底等高的圆柱与圆锥体积之间的关系,根据已学的圆柱体积推导圆锥体积,通过这种方法沟通新旧知识之间的联系,来解决实际问题。
针对这样的学情,要推导出圆锥的体积,关键就在于教师能否采取有效的措施,沟通学生已有的知识结构。在具体实施教学的过程中,正是以这样的起点作支撑,以直观操作入手,让学生在动手操作中发现问题,解决问题,不仅便于学生接受和理解,还达到了较为理想的效果。
因此,只有认真分析教材,找准教学的起点,才能准确定位教学目标,合理安排教学时间,使教学活动紧凑严密,发挥出课堂教学的最大效益。
二、优化教学策略
通过对教材的解读和对学生的关注,将知识进行重组和整合,根据已有的教学条件,选取更合适的内容对教材进行二度加工,从而充分有效地将教材的知识激活,提高课堂教学的实效性。在探究圆锥的体积公式时,让学生利用准备的学具进行试验操作,达到了教学目标。
精彩的课堂效果往往是在不断变化的教学方法中逐步呈现出来的。每个环节的设计并非一成不变,而是要在对已学知识进行巩固的基础上有所提升,有所转变。学生在解决问题时,也不是简单的应用已知的信息,而是对原有相关的数学信息进行加工,重新组织,找出对当前问题适用的对策。因此,在解决问题的过程中,采用猜测、实验验证等不同的策略开展教学,让学生感受到数学学习充满趣味性的同时也具备一定的挑战性,问题一旦解决了,学生的思维能力随之也发生了变化。
《圆锥的体积》教学设计 篇五
设计意图:
本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,旨在让学生理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。
我的设计是“颠倒课堂”的一次尝试,旨在让学生晚上在家观看教学视频,进行深层次的掌握学习,一次学不会,还可以反复学习,直到学会为止。这是与传统的“白天在课室听老师讲课,晚上回家做作业”的方式正好相反的课堂模式。
教学目标:
1、理解掌握求圆锥体积的计算公式和推导过程,会运用公式计算圆锥的体积。
2、会应用公式计算圆锥的体积并解决一些实际问题。
3、帮助学生建立空间观念,培养学生抽象的逻辑思维能力,激发学生的想象力。
教学重点:
使学生初步掌握圆锥体积的计算方法并解决一些实际问题
教学难点:
圆锥体积计算方法和推导过程。
教学过程:
一、复习铺垫:
1、揭示课题:今天我们一起来探究如何计算圆锥的体积。
2、以旧引新:我们知道,圆柱的体积=底面积×高,字母公式:V=Sh。如何计算圆锥的体积呢?圆柱的底面是圆的,圆锥的底面也是圆的,圆锥的体积与圆柱的体积有没有关系呢?
二、实验操作:
1、请看接下来的2个实验:
2、实验准备:2组等底等高的圆柱、圆锥容器;水与沙子。
3、播放视频:
实验一:我们将圆锥容器装满水,再往圆柱容器里面倒(倒3次),3次正好装满。
实验二:我们将圆柱容器装满沙,再往圆锥容器里面倒(倒3次),3次正好装满。
4、通过实验你们发现了什么?
三、公式推导:
1、通过两次的实验我们可以得出结论:
圆柱的体积是与它等底等高的圆锥体积的3倍;也就是说圆锥的体积是与它等底等高的圆柱体积的。
2、写成公式:圆锥的体积=与它等底等高的圆柱体积×;因为圆柱的体积=底面积×高,所以圆锥的体积=底面积×高×;写成字母公式:V= Sh。因此,要求圆锥的体积,必须知道圆锥的底面积与高。
3、如果知道圆锥的底面半径r与高h,圆锥的体积公式还可以怎样表示呢?因为底面圆的面积s=πr2,所以圆锥的体积V= πr2h。
4、在应用圆锥体积公式时不要忘记乘!
四、知识应用
1、接下来我们应用公式解决实际问题。
题:工地上有一堆沙子,近似于一个圆锥体,沙堆底面直径4m,高1。2m。这堆沙子大约有多少立方米?(得数保留两位小数)
2、分析题意:要求这堆沙子大约有多少立方米,就是求圆锥体沙堆的体积。根据公式我们需要知道沙堆的底面积与高。根据底面直径4m,可以先求出沙堆的底面积,再用底面积乘高求出沙堆的体积。
3、列式解答。(分步与综合)
五、知识小结:
今天我们学习了圆锥的体积计算:V= Sh= πr2h。
在应用圆锥体积公式时我们要记住乘,还要留意单位名称是否统一!
六、结束。
【课堂教学设想】
1、学生看完视频对于实验成功的必要条件“等底等高”、“每次倒满”等有了一定的认识,且会跃跃欲试,为课堂的实验操作做了铺垫。
2、课堂上组织学生分小组实验:
圆柱与圆锥等底不等高时,实验结果会怎样?
圆柱与圆锥等高不等底时,实验结果会怎样?
“圆锥的体积是圆柱体积的”这一关系存在的条件是什么?
圆锥与圆柱体积相等时,如果高相等,底面积有什么关系?如果底面积相等,高有什么关系?
3、课堂检测,促进知识内化。
【教学反思】
本节课教学目标定位为学生初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,所以设计时力求每个环节都为教学目标服务。
课前观看视频。首先回忆圆柱体积公式,通过圆柱与圆锥的底面都是圆的,让学生猜测圆柱与圆锥体积之间的关系,然后通过两次的实验验证圆锥体体积的计算方法,实现了一个“做数学”的过程。通过课外的视频学习,能加深学生对图形特征以及图形之间的内在联系的认识,进一步领会转化的数学思想。
课内通过小组实验操作进一步验证“圆锥的体积是圆柱体积的”这一关系存在的必要条件是等底等高,从而推导出圆锥的体积计算公式:V= Sh= πr2h,从而培养了学生构建知识系统的能力和知识迁移及综合整理的能力。课堂上不再重复学习微课程中的知识,把时间花在完成练习上,通过不同的练习检测学生的掌握情况,对暴露的问题进行有针对性的辅导,从而提高教学效率。
《圆锥的体积》教学设计 篇六
一、教学内容
《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。
二、教材分析
本课属于属于空间与图形知识的教学,是小学阶段几何知识的重难点部分。”六年级学生在经过小学六年的学习,已经具有了一定的空间想象能力和动手能力。
三、教学目标
1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。
2、能运用公式解答有关的实际问题。
四、教学重难点
教学重点:圆锥体积的计算公式
教学难点:圆锥的体积公式推导。
五、课前准备
课件
六、教学过程
一、谈话引入
今天,我们来学习圆锥的体积公式是怎样推导出来的?
二、自主探索,操作实验
下面,我们一起来做个小实验
(1)取一个圆柱体的容器和圆锥体的容器各一个。让学生观察一下,得出:这两个容器等底等高。
(2)往圆锥体容器中装满水,倒入圆柱体的容器中,一连倒入三次,这时候圆柱体的容器中装满水。
(3)这两个容器等底等高,通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?
引导学生观察:圆柱的体积的三分之一等于圆锥的体积,而圆柱的体积等于底面积乘高,圆柱体积的三分之一用底面积乘高乘三分之一表示,因为圆柱体积的三分之一等于圆锥的体积,所以推导出圆锥的体积等于底面积乘高乘三分之一。用字母表示:v=1/3sh
三、练习填空
1、圆锥的体积=(),用字母表示是()。
2、圆柱体积的与和它()的圆锥的体积相等。
3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。
学生练习,教师总结。
四、巩固练习:
求下面各圆锥的体积,只列算式。(单位:厘米)
观察第一个图形告诉底面半径和高,要先求出底面积,然后根据圆锥的体积公式带入数字。第二个图形告诉底面直径和高,要先求出底面半径,再求底面积,然后根据圆锥的体积公式带入数字。
五、运用所学的知识解决实际问题
一堆大米,近似于圆锥形,量得底面周长是18、84米,高6米。它的体积是多少立方米?一堆大米,近似于圆锥形,量得底面周长是18、84米,高6米。它的体积是多少立方米?
学生思考,教师讲解:
先求半径:18、84÷ 3、14 ÷ 2=3(米)
再求底面积:3、14×3=28、26(平方米)
求圆锥体积:1/3×28、26×6=56、52(立方米)
最后求大米的重量:56、52×500=28260(千克)
六、计算圆锥的体积所必须的条件
学生思考,教师归纳总结
计算圆锥的体积所必须的条件可以是:
底面积和高
底面半径和高
底面直径和高
底面周长和高
只要知道啦其中的两个条件,就可以求出圆锥的体积。
微课学习指导
本微课的教学内容为《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。
微课视频共8分53秒,前18秒为片头,后面是利用圆柱的体积推导出圆锥的体积,利用实验推导的过程及练习巩固的过程。
配套学习资料
圆柱的体积公式
圆柱的体积公式等于底面积乘高,用字母表示:V=sh
微课制作技术
1、使用ppt制作片头。
2、使用手机摄录视频效果。
3、使用Camtasia Studio软件和会声会影软件进行后期的混音制作和整合。
4、使用格式工厂进行最后的格式转换。
教学需求分析
适用对象分析:适用于六年级下册的学生,在学习了圆柱的体积之后才能学习此内容。
学习内容分析:《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。
学习目标分析:
(1)通过动手操作参与实验,发现等底等高的圆柱圆锥体积之间的关系,从而得出圆锥体积的计算公式。