《一元二次方程的解法》教学反思(精选6篇)

时间:2015-06-07 09:11:40
染雾
分享
WORD下载 PDF下载 投诉

《一元二次方程的解法》教学反思 篇一

在教授一元二次方程的解法时,我采用了传统的讲授方式,先讲解理论知识,然后通过一些例题进行练习。但是在教学过程中,我发现学生们对于方程解法的理解存在一定的困难,他们很难将理论知识与实际问题相结合,无法快速且准确地解决方程问题。因此,我决定在今后的教学中采用更加灵活和实践性的教学方法,以提高学生的学习效果。

首先,我计划引入更多的实际问题来激发学生的学习兴趣。通过给学生一些真实的问题,让他们意识到方程解法在解决实际问题中的重要性。例如,我可以给学生一些关于物体自由落体运动的问题,让他们通过建立方程来解决问题。这样一来,学生们可以更加直观地理解方程解法的应用价值,并且能够在实际问题中灵活运用所学的知识。

其次,我打算增加一些互动性强的教学活动。在教学过程中,我会鼓励学生们参与到解题过程中,提出自己的思路和解法,并与其他同学进行讨论和交流。通过让学生们积极参与到解题过程中,不仅可以培养他们的思维能力和解决问题的能力,还可以增强他们的合作意识和团队精神。

此外,我还计划利用一些多媒体工具来辅助教学。通过使用投影仪或者电子白板,我可以将一些图像、动画或者实验视频展示给学生们,让他们更加直观地理解方程解法的过程。同时,我还可以利用电子课件制作一些互动性强的练习题,让学生们在课堂上进行实时答题,以检验他们对于方程解法的掌握程度。

最后,我会鼓励学生们进行自主学习和练习。我会提供一些相关的参考资料和习题,让学生们在课后进行自主学习和巩固。同时,我也会安排一些课外辅导时间,为有需要的学生提供额外的帮助和指导。通过这种方式,我相信学生们能够更好地掌握一元二次方程的解法,并且能够将其运用到实际问题中。

通过对《一元二次方程的解法》教学的反思,我意识到传统的讲授方式在培养学生解决问题的能力方面存在一定的不足。因此,我将采取更加实践性和灵活的教学方法,以提高学生的学习效果。我相信通过这样的改进,学生们能够更好地理解和掌握方程解法,将其应用到实际问题中,提高他们的解决问题的能力和创新思维能力。

《一元二次方程的解法》教学反思 篇三

  (1)一元二次方程是研究现实世界数量关系和变化规律的重要模型,引课时从生活中常见的“梯子问题”出发,根据学生应用勾股定理时所列方程的不同,引导学生对所列方程的解法展开讨论,进而获得开平方法。引课时力求体现“问题情境——建立数学模型——解释、应用与拓展”的模式,注重数学知识的形成与应用过程。

  (2)如何配方是本节课的教学重点与难点,在进行这一块内容的教学时,教师提出具有一定跨度的问题串引导学生进行自主探索;提供充分探索与交流的空间;在巩固、应用配方法时,从一元二次方程二次项系数为1讲到二次项系数不为1的情况,从方程的配方讲到代数式的配方与证明,呈现形式丰富多彩,教学内容的编排螺旋式上升。这既提高了学生的学习兴趣,又加深了对所学知识的理解。

《一元二次方程的解法》教学反思 篇四

  一元二次方程是整个初中阶段所有方程的核心。它与二次函数有密切的联系,在以后将应用于解分式方程、无理方程及有关应用性问题中。一元二次方程的解法——因式分解法,是建立在一元二次方程解法及因式分解的基础上,因此我采取让学生带着问题自学课本,寻找因式分解法解一元二次方程的形式特征,即等号右边必须为零,左边必须为两个一次

因式的乘积(不能是加减运算),利用零的特性,将求一元二次方程的解,通过因式分解法,转化为求两个一元一次方程的解,将未知领域转化为已知领域,渗透了化归数学思想,让班上中等偏下学生先上黑板解题,将暴露出来的问题,在全班及时纠正。本节课较好地完成了教学目标,同时还培养了学生看书自学的能力,取得较好的教学效果。

  老师提示:

  1.用分解因式法的条件是:方程左边易于分解,而右边等于零;

  2.关键是熟练掌握因式分解的知识;

  3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.

《一元二次方程的解法》教学反思 篇五

  一、配方法解方程教学反思

  本节共分3课时,第一课时引导学生通过转化得到解一元二次方程的配方法,第二课时利用配方法解数字系数的一般一元二次方程,第3课时通过实际问题的'解决,培养学生数学应用的意识和能力,同时又进一步训练用配方法解题的技能。

  在教学中最关键的是让学生掌握配方,配方的对象是含有未知数的二次三项式,其理论依据是完全平方式,配方的方法是通过添项:加上一次项系数一半的平方构成完全平方式,对学生来说,要理解和掌握它,确实感到困难,因此在教学过程中及课后批改中发现学生出现以下几个问题:

  在利用添项来使等式左边配成一个完全平方公式时,等式的右边忘了加。

  在开平方这一步骤中,学生要么只有正、没有负的,要么右边忘了开方。

  当一元二次方程有二次项的系数不为1时,在添项这一步骤时,没有将系数化为1,就直接加上一次项系数一半的平方。

  因此,要纠正以上错误,必须让学生多做练习、上台表演、当场讲评,才能熟练掌握。

  二、用公式法解一元二次方程教学反思

  通过本节课的教学,使我真正认识到了自己课堂教学的成功与失败。对我今后课堂教学有了一定引领方向有了很大的帮助。下面我就谈谈自己对这节课的反思。

  本节课的重点主要有以下3点:

  1. 找出a,b,c的相应的数值2. 验判别式是否大于等于03. 当判别式的数值符合条件,可以利用公式求根.

  在讲解过程中,我没让学生进行(1)(2)步就直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多.

  1. a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号

  2. 求根公式本身就很难,形式复杂,代入数值后出错很多.

  其实在做题过程中检验一下判别式着一步单独挑出来做并不麻烦,直接用公式求值也要进行,提前做着一步在到求根公式时可以把数值直接代入.在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果

  3、板书不太理想。板书可以说在课堂教学也起关键作用,它可以帮学生温习本课的内容,而我许多本该板书的内容全部反映在大屏幕上,在继续讲一下个内容时,这些内容也就不会再出现,只给学生瞬间的停留,这样做也有欠妥当。

  4、本节课没有激情,学习的积极性调动不起来,对学生地鼓励性的语言过于少,可以说几乎没有。

  三、分解因式法解一元二次方程的教学反思

  教学时可以让学生先各自求解,然后进行交流并对学生的方法与课本上对小颖、小明、小亮的方法进行比较与评析,发现分解因式是解某些一元二次方程较为简便的方法。利用分解因式法解题时。很多同学在解题时易犯的错误是进行了非同解变形,结果丢掉一根,对此教学时只能结合具体方程予以说明,另外,本节课学生易忽略一点是“或”与“且”的区别,应做些说明。

  对于学有余力的学生可以介绍十字相乘法,它对二次三项式分解因式简便。

  通过以上的反思,我将在以后的教学中对自己存在的优点我会继续保持,针对不足我将会不断地改进,使自己的课堂教学逐步走上一个新的台阶。

《一元二次方程的解法》教学反思 篇六

  利用求根公式解一元二次方程的一般步骤:

  1、找出a,b,c的相应的数值;

  2、验判别式是否大于或等于0;

  3、当判别式的数值大于或等于0时,可以利用公式求根,若判别式的数值小于0,就判别此方程无实数解。

  在讲解过程中,我要求学生先进行1、2步,然后再用公式求根。因为学生第一次接触求根公式,求根公式本身就很难,学生可以说非常陌生,如果不先进行1、2步,结果很容易出错。首先,对于一些粗心的同学来说,a,b,c的符号就容易出问题,也就是在找某个项的系数或常数项时总是丢掉前面的符号。其次,一无二次方程的求根公式形式复杂,直接代入数值后求根出错一定很多。但有少数心急的同学,他们总是嫌麻烦,省掉1、2步,直接用公式求根。

  为什么会这样呢?我认为有这几方面的原因:

  一是学生没体会这样做的好处,其实在做题过程中检验一下判别式非常必要,同时也简化了判别式的值,给下面的运算带来方便。这样做并不麻烦,而直接用公式求值也要进行这两步。

  二是学生刚学习公式法,例题比较简单,对于简单的题,这样做还可以,但一旦养成习惯,遇到复杂的习题就不好办了。

  三是部分学生老是想图省事,没学会走,就想跑,想一口吃个大胖子。

  在今后的教学中,还要加强对新知识学习过程中格式和步骤的要求,并且对习惯不好的同学要进行耐心细致的讲解,让他们认识到这样做的弊端,掌握正确的学习方法,提高正确率。

《一元二次方程的解法》教学反思(精选6篇)

手机扫码分享

Top