简单的著名数学家的故事 篇一
伽利略·伽利雷是一个伟大的数学家,天文学家和物理学家。他出生于1564年,是意大利文艺复兴时期最杰出的科学家之一。
伽利略在数学上有许多重大贡献。他是第一个使用无限小的概念进行数学建模的人。他发展了计算物体在斜面上滚动的速度的数学方法,并研究了摆线的性质。他的研究奠定了后来微积分的基础。
伽利略还对力学做出了重要贡献。他发现物体在真空中以相同的速度下落,不论其质量大小。这一发现推翻了亚里士多德的观点,成为现代物理学的基石。
然而,伽利略的研究并不被当时的教会所接受。他的观点被认为是异端邪说,受到了强烈的反对。教会试图将他的著作禁止,并将他软禁在家中。但是,伽利略坚持自己的观点,继续进行科学研究。
最终,伽利略的观点得到了认可。他的研究成果被广泛接受,并对后来的科学发展产生了深远影响。他的方法和思想成为了现代科学的基础。
伽利略的故事告诉我们,作为科学家,要勇敢地追求真理,不被传统观念所束缚。即使面对困难和反对,我们也要坚定信念,坚持自己的研究方向。只有这样,我们才能取得突破性的科学成果,推动人类社会的进步。
简单的著名数学家的故事 篇二
阿基米德是古希腊最杰出的数学家之一。他出生于公元前287年,是一位全才型天才科学家。
阿基米德在数学上有许多重要发现。他发明了数学中的阿基米德螺旋,这是一种用来测量圆周率的方法。他还发展了数学中的积分和微分的概念,并使用这些概念解决了许多几何问题。
除了数学,阿基米德还在物理学和工程学领域做出了重要贡献。他发现了浮力和杠杆原理,并应用这些原理设计了许多机械装置。他的发明包括用于提水的螺旋式水泵和用于移动重物的杠杆系统。
阿基米德的天才被当时的国王所赏识。这位国王给阿基米德提供了一间专门用于研究的实验室,并提供了足够的经费和资源。在这个实验室里,阿基米德进行了许多重要的研究,并取得了突破性的成果。
阿基米德的故事告诉我们,天才需要有一个良好的环境来发展。只有给予足够的支持和资源,才能激发天才的潜力,并取得卓越的成就。因此,我们应该为科学家提供更好的研究条件,以促进科学的进步和发展。
简单的著名数学家的故事 篇三
华罗庚
出生在一个摆杂货店的家庭,从小体弱多病,但他凭借自己一股坚强的毅力和崇高的追求,终于成为一代数学宗师.
少年时期的华罗庚就特别爱好数学,但数学成绩并不突出.19岁那年,一篇出色的文章惊动了当时著名的数学家熊庆来.从此在熊庆来先生的引导下,走上了研究数学的道路.晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终生!华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物.下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏:有位老师,想辨别他的3个学生谁更聪明.他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色.
3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子
聪明的小读者,想想看,他们是怎么知道帽子颜色的呢?“ 为了解决上面的伺题,我们先考虑“2人1顶黑帽,2顶白帽”问题.因为,黑帽只有1顶,我戴了,对方立刻会说自己戴的是白帽.但他踌躇了一会,可见我戴的是白帽.
这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了.假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子.看到这里。同学们可能会拍手称妙吧.后来,华爷爷还将原来的问题复杂化,“n个人,n-1顶黑帽子,若干(不少于n)顶白帽子”的问题怎样解决呢?运用同样的方法,便可迎刃而解.他并告诫我们:复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃.
4.祖冲之(算不算?)
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的`.祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".
简单的著名数学家的故事 篇四
毕达哥拉斯(Pythagoras)古希腊数学家、哲学家。毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛)的贵族家庭,自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学。后来因为向往东方的智慧,经过万水千山,游历了当时世界上两个文化水准极高的文明古国——巴比伦和印度,以及埃及(有争议),吸收了阿拉伯文明和印度文明(公元前480年)的文化。后来他就到意大利的南部传授数学及宣传他的哲学思想,后来和他的信徒们组成了一个所谓「毕达哥拉斯学派」的政治。比同时代中一些开坛授课的学者进步一点;因为他容许妇女(当然是贵族妇女而非奴隶女婢)来听课。他认为妇女也是和男人一样有求知的权利,因此他的学派中就有十多名女学者。这是其他学派所没有的现象。
简单的著名数学家的故事 篇五
数学家的故事——阿基米德
今天为大家简单的介绍一下古希腊的著名数学家阿基米德先生,阿基米德生于公元前287年,逝世于公元前212年,是静态力学和流体动力学的奠基人,并且享有“力学之父”的美称,并与牛顿,高斯
并列为世界三大数学家
这里有一个关于阿基米德先生与杠杆原理之间的小故事,在阿基米德先生发现杠杆原理之前,志学家们提及为什么杠杆可以撬动沉重的石块,从深井中取水时,一口咬定认为是“魔性”,但阿基米德先生不承认这个原因,因为他懂得自然界里的种种现象,总有自然的原因来解释。阿基米德确立了杠杆定律后,就推断说,只要能够取得适当的杠杆长度,任何重量都可以用很小的力量举起来。他曾经说过: “给我一个支点、我就能举起地球!” 叙拉古国王听说后,并不相信这个理论,要求阿基米德现场演示杠杆原理,阿基米德答应为国王推动一艘大船,他利用杠杆和滑轮,设计、制造了一套巧妙的机械。把一切都准备好后,阿基米德请国王来观看大船下水。他把一根粗绳的末端交给国王,让国王轻轻拉一下。顿时,那艘大船慢慢移动起来,顺利地滑下了水里,国王和大臣们看到后惊奇不已!于是,国王信服了阿基米德,并向全国发出布告:“从此以后,无论阿基米德讲什么,都要相信他……” 就这样杠杆原理得以确立。在当时的人看来阿基米德先生的学说很奇怪,但是科学在发现的那一刻起,经过时间的历练,无论过去多久它都是正确的,即使发现它的时代认为它有多么的不可思议。
在神学占主流的古希腊,阿基米德先生是异类,但是阿基米德先生有一颗追求真理的心,他的一生并没有屈服于神
学,在他最后死时,他依旧在研究他的学说,探索这世界的正真面目,阿基米德先生在数学和物理方面做出了巨大的贡献,为社会进步和人类发展做出了不可磨灭的影响,称他为“理论天才与实验天才合于一人的理想化身”,我们是否也应向他学习,追求科学与真理时,不盲从大众,不仅限于理论,而应有自己的见解,把实践与理论相结合,一步一步向真理与科学靠近,在吸纳先人留给我们的知识的同时,我们也应该为后代留下新的知识,让科学得以继续发展,让人类一点一点揭开世界的面纱,创造出现的天地。