初中数学知识点归纳 篇一
初中数学是学生们在数学学科中的第一次系统学习,掌握初中数学知识点对于学生的数学学习起着至关重要的作用。本篇文章将对初中数学的知识点进行归纳总结,帮助学生们更好地掌握初中数学的核心概念。
一、数的性质与运算
1. 整数:正整数、负整数、零的概念及其运算法则。
2. 分数:分数的概念、分数的加减乘除运算。
3. 小数:小数的概念、小数的加减乘除运算、小数与分数之间的转化。
4. 百分数:百分数的概念、百分数的加减乘除运算。
二、代数与方程
1. 代数式与多项式:代数式的概念、多项式的加减乘法。
2. 一元一次方程:方程的概念、一元一次方程的解法。
3. 一元一次不等式:不等式的概念、一元一次不等式的解法。
三、几何
1. 平面几何:平面图形的性质、面积与周长计算。
2. 空间几何:立体图形的性质、体积与表面积计算。
四、函数与图像
1. 函数的概念:函数的定义、函数的性质。
2. 图像的表示:平面直角坐标系、坐标与图像的关系。
五、统计与概率
1. 统计:数据的收集、整理与分析。
2. 概率:事件的概念、事件的概率计算。
初中数学知识点归纳 篇二
初中数学是学生们数学学科中的重要阶段,掌握初中数学知识点对于学生的数学学习起着至关重要的作用。本篇文章将对初中数学的知识点进行归纳总结,帮助学生们更好地掌握初中数学的核心概念。
一、数的性质与运算
1. 整数:正整数、负整数、零的概念及其运算法则。
2. 分数:分数的概念、分数的加减乘除运算。
3. 小数:小数的概念、小数的加减乘除运算、小数与分数之间的转化。
4. 百分数:百分数的概念、百分数的加减乘除运算。
二、代数与方程
1. 代数式与多项式:代数式的概念、多项式的加减乘法。
2. 一元一次方程:方程的概念、一元一次方程的解法。
3. 一元一次不等式:不等式的概念、一元一次不等式的解法。
三、几何
1. 平面几何:平面图形的性质、面积与周长计算。
2. 空间几何:立体图形的性质、体积与表面积计算。
四、函数与图像
1. 函数的概念:函数的定义、函数的性质。
2. 图像的表示:平面直角坐标系、坐标与图像的关系。
五、统计与概率
1. 统计:数据的收集、整理与分析。
2. 概率:事件的概念、事件的概率计算。
通过对初中数学知识点的归纳总结,可以帮助学生们更好地理解和掌握初中数学的核心概念,为后续的数学学习打下坚实的基础。希望学生们能够认真学习,不断提升自己的数学水平。
初中数学知识点归纳 篇三
如果一组等距的平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
平行定理:经过直线外一点,有且只有一条直线与这条直线平行
推论:如果两条直线都和第三条直线平行,这两条直线也互相平行
证明两直线平行定理:
同位角相等,两直线平行
内错角相等,两直线平行
同旁内角互补,两直线平行
两直线平行推论:
两直线平行,同位角相等
初中数学知识点归纳 篇四
我们学习过的配方法其实可解全部的一元二次方程,但基本上的题型是容易配方的试题。
配方法
如:解方程:x2+2x-3=0
解:把常数项移项得:x2+2x=3
等式两边同时加1(构成完全平方式)得:x2+2x+1=4
因式分解得:(x+1)2=4
解得:x1=-3,x2=1
用配方法解一元二次方程小口诀
二次系数化为一
常数要往右边移
一次系数一半方
两边加上最相当
解决一元二次方程的方法有很多,是我们经常转化运用的知识要领。
初中数学知识点归纳 篇五
简单解释就是,用不等号可以将两个解析式连接起来所成的式子就是我们这一章节所说的不等式。
不等式
例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等>x是超越不等式。
不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)
“≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
其实在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式了。
初中数学知识点总结:平面直角坐标系
平面直角坐标系:
在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
因式分解定义
:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素
:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:
一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法
:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。
初中数学知识点归纳 篇六
最简单的解释就是,不等式是指用不等号可以将两个解析式连接起来所成的式子。
1.概念
:在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等>x是超越不等式。
2、分类:
不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)
“≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
我们大家在判定不等式时要记得,在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式。