初中物理知识点归纳小结【优质5篇】

时间:2017-03-09 06:45:22
染雾
分享
WORD下载 PDF下载 投诉

初中物理知识点归纳小结 篇一

初中物理是学生在学习物理的初级阶段,对于初中物理的知识点进行归纳小结,可以帮助学生更好地理解和掌握物理知识。下面将对初中物理的一些重要知识点进行归纳总结。

1. 运动与力

运动是物体位置随时间发生变化的过程,力是物体之间相互作用产生的结果。初中物理中主要涉及到的运动与力的知识点有:速度、加速度、力的合成与分解、牛顿第一、二、三定律等。

2. 声与光

声是物体振动产生的机械波,光是由物体发出的电磁波。初中物理中涉及到的声与光的知识点有:声音的产生、传播和听觉;光的传播、反射、折射和色散等。

3. 电与磁

电是物质带电粒子的运动产生的现象,磁是指物质中存在的磁场。初中物理中涉及到的电与磁的知识点有:电荷与电流、电路与电阻、电磁感应与发电原理、磁场与电磁铁等。

4. 热与能

热是物体之间能量传递的方式,能是物体具有的做功或放热的能力。初中物理中涉及到的热与能的知识点有:热的传递方式、热膨胀与热收缩、能量转化与守恒等。

5. 物质与变化

物质是构成世界的基本单位,物质的变化是物质内部结构或性质发生改变的过程。初中物理中涉及到的物质与变化的知识点有:物质的组成与变化、固体、液体和气体状态的变化、溶液与分离技术等。

初中物理知识点归纳小结 篇二

初中物理是学生在学习物理的初级阶段,下面将对初中物理的一些重要知识点进行归纳总结。

1. 运动与力

运动是物体位置随时间发生变化的过程,力是物体之间相互作用产生的结果。在初中物理中,学生需要掌握速度、加速度的概念以及力的合成与分解的方法。此外,牛顿三定律也是初中物理的重要内容。

2. 声与光

声是物体振动产生的机械波,光是由物体发出的电磁波。在初中物理中,学生需要了解声音的产生、传播和听觉的原理,以及光的传播、反射、折射和色散等基本知识。

3. 电与磁

电是物质带电粒子的运动产生的现象,磁是指物质中存在的磁场。初中物理中,学生需要掌握电荷与电流的概念,了解电路与电阻的基本原理,以及电磁感应与发电的原理和磁场与电磁铁的基本知识。

4. 热与能

热是物体之间能量传递的方式,能是物体具有的做功或放热的能力。在初中物理中,学生需要了解热的传递方式,如传导、对流和辐射等,以及能量转化与守恒的基本原理。

5. 物质与变化

物质是构成世界的基本单位,物质的变化是物质内部结构或性质发生改变的过程。在初中物理中,学生需要了解物质的组成与变化,掌握固体、液体和气体状态的变化规律,以及溶液与分离技术的基本原理。

以上是初中物理知识点的归纳小结,通过对这些知识点的掌握,学生可以更好地理解和应用物理知识,实现对物理的全面学习和掌握。

初中物理知识点归纳小结 篇三

  1)匀变速直线运动

  1.平均速度V平=s/t(定义式)

  2.有用推论Vt2-Vo2=2as

  3.中间时刻速度Vt/2=V平=(Vt+Vo)/2

  4.末速度Vt=Vo+at

  5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2

  6.位移s=V平t=Vot+at2/2=Vt/2t

  7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a反向则a0}

  8.实验用推论s=aT2{s为连续相邻相等时间(T)内位移之差}

  注:(1)平均速度是矢量;

  (2)物体速度大,加速度不一定大;

  (3)a=(Vt-Vo)/t只是量度式,不是决定式;

  2)自由落体运动

  1.初速度Vo=0

  2.末速度Vt=gt

  3.下落高度h=gt2/2(从Vo位置向下计算)

  4.推论Vt2=2gh

  3)竖直上抛运动

  1.位移s=Vot-gt2/2

  2.末速度Vt=Vo-gt(g=9.8m/s210m/s2)

  3.有用推论Vt2-Vo2=-2gs

  4.上升最大高度Hm=Vo2/2g(抛出点算起)

  5.往返时间t=2Vo/g(从抛出落回原位置的时间)

  4)平抛运动

  1.水平方向速度:Vx=Vo

  2.竖直方向速度:Vy=gt

  3.水平方向位移:x=Vot

  4.竖直方向位移:y=gt2/2

  5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

  6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

  合速度方向与水平夹角:tg=Vy/Vx=gt/V0

  7.合位移:s=(x2+y2)1/2,

  位移方向与水平夹角:tg=y/x=gt/2Vo

  8.水平方向加速度:ax=0;竖直方向加速度:ay=g

  5)匀速圆周运动

  1.线速度V=s/t=2r/T

  2.角速度=/t=2f

  3.向心加速度a=V2/r=2r=(2/T)2r

  4.向心力F心=mV2/r=m2r=mr(2/T)2=mv=F合

  5.周期与频率:T=1/f

  6.角速度与线速度的关系:V=r

  7.角速度与转速的关系=2n(此处频率与转速意义相同)

  6)万有引力

  1.开普勒第三定律:T2/R3=K(=42/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

  2.万有引力定律:F=Gm1m2/r2(G=6.6710-11N?m2/kg2,方向在它们的连线上)

  3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半径(m),M:天体质量(kg)}

  4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;=(GM/r3)1/2;T=2(r3/GM)1/2{M:中心天体质量}

  5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

  6.地球同步卫星GMm/(r地+h)2=m42(r地+h)/T2{h36000km,h:距地球表面的高度,r地:地球的半径}

  注:

  (1)天体运动所需的向心力由万有引力提供,F向=F万;

  (2)应用万有引力定律可估算天体的质量密度等;

  (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

  (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

  (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

  【常见的力】

  1.重力G=mg(方向竖直向下,g=9.8m/s210m/s2,作用点在重心,适用于地球表面附近)

  2.胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

  3.滑动摩擦力F=FN{与物体相对运动方向相反,:摩擦因数,FN:正压力(N)}

  4.静摩擦力0fm(与物体相对运动趋势方向相反,fm为最大静摩擦力)

  5.万有引力F=Gm1m2/r2(G=6.6710-11N?m2/kg2,方向在它们的连线上)

  6.静电力F=kQ1Q2/r2(k=9.0109N?m2/C2,方向在它们的连线上)

  7.电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

  8.安培力F=BILsin(为B与L的夹角,当LB时:F=BIL,B//L时:F=0)

  9.洛仑兹力f=qVBsin(为B与V的夹角,当VB时:f=qVB,V//B时:f=0)

  【力的合成与分解】

  1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1F2)

  2.互成角度力的合成:

  F=(F12+F22+2F1F2cos)1/2(余弦定理)F1F2时:F=(F12+F22)1/2

  3.合力大小范围:|F1-F2||F1+F2|

  4.力的正交分解:Fx=Fcos,Fy=Fsin(为合力与x轴之间的夹角tg=Fy/Fx)

  【动力学(运动和力)】

  1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

  2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

  3.牛顿第三运动定律:F=-F{负号表示方向相反,F、F各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

  4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}

  5.超重:FNG,失重:FN

  6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子

  【振动和波(机械振动与机械振动的传播)】

  1.简谐振动F=-kx{F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}

  2.单摆周期T=2(l/g)1/2{l:摆长(m),g:当地重力加速度值,成立条件:摆角100;lr}

  3.受迫振动频率特点:f=f驱动力

  4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用

  6.波速v=s/t=f=/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}

  7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)

  8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大

  9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)

  注:

  (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

  (2)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;

  (3)干涉与衍射是波特有的;

  1.动量:p=mv{p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}

  2.冲量:I=Ft{I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}

  3.动量定理:I=p或Ft=mvtmvo{p:动量变化p=mvtmvo,是矢量式}

  4.动量守恒定律:p前总=p后总或p=p也可以是m1v1+m2v2=m1v1+m2v2

  5.弹性碰撞:Ek=0{即系统的动量和动能均守恒}

  6.非弹性碰撞0EKEKm{EK:损失的动能,EKm:损失的最大动能}

  7.完全非弹性碰撞EK=EKm{碰后连在一起成一整体}

  8.物体m1以v1初速度与静止的物体m2发生弹性正碰:

  v1=(m1-m2)v1/(m1+m2)v2=2m1v1/(m1+m2)

  9.由8得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

  10.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失

  E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相对子弹相对长木块的位移}

  1.功:W=Fscos(定义式){W:功(J),F:恒力(N),s:位移(m),:F、s间的夹角}

  2.重力做功:Wab=mghab{m:物体的质量,g=9.8m/s210m/s2,hab:a与b高度差(hab=ha-hb)}

  3.电场力做功:Wab=qUab{q:电量(C),Uab:a与b之间电势差(V)即Uab=b}

  4.电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}

  5.功率:P=W/t(定义式){P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

  6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}

  7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

  8.电功率:P=UI(普适式){U:电路电压(V),I:电路电流(A)}

  9.焦耳定律:Q=I2Rt{Q:电热(J),I:电流强度(A),R:电阻值(),t:通电时间(s)}

  10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

  11.动能:Ek=mv2/2{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

  12.重力势能:EP=mgh{EP:重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

  13.电势能:EA=qA{EA:带电体在A点的电势能(J),q:电量(C),A:A点的电势(V)(从零势能面起)}

  14.动能定理(对物体做正功,物体的动能增加):

  W合=mvt2/2-mvo2/2或W合=EK

  {W合:外力对物体做的总功,EK:动能变化EK=(mvt2/2-mvo2/2)}

  15.机械能守恒定律:E=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

  16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-EP

  注:

  (1)功率大小表示做功快慢,做功多少表示能量转化多少;

  (2)O090O做正功;90O180O做负功;=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);

  (3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少

  (4)重力做功和电场力做功均与路径无关(见2、3两式);

  (5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;

  (6)能的其它单位换算:1kWh(度)=3.6106J,1eV=1.6010-19J;

  (7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。

  【分子动理论、能量守恒定律】

  1.阿伏加德罗常数NA=6.021023/mol;分子直径数量级10-10米

  2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2}

  3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

  4.分子间的引力和斥力(1)r

  (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)

  (3)rr0,f引f斥,F分子力表现为引力

  (4)r10r0,f引=f斥0,F分子力0,E分子势能0

  5.热力学第一定律W+Q=U{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),

  W:外界对物体做的正功(J),Q:物体吸收的热量(J),U:增加的内能(J),涉及到第一类永动机不可造出

  8.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}

  注:

  (1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

  (2)温度是分子平均动能的标志;

  (3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

  (4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;

  (5)气体膨胀,外界对气体做负功W温度升高,内能增大0;吸收热量,Q0

  (6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

  (7)r0为分子处于平衡状态时,分子间的距离;

  【电场】

  1.两种电荷、电荷守恒定律、元电荷:(e=1.6010-19C);带电体电荷量等于元电荷的整数倍

  2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

  3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

  4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}

  5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

  6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

  7.电势与电势差:UAB=B,UAB=WAB/q=-EAB/q

  8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

  9.电势能:EA=qA{EA:带电体在A点的电势能(J),q:电量(C),A:A点的电势(V)}

  10.电势能的变化EAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}

  11.电场力做功与电势能变化EAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)

  12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

  13.平行板电容器的电容C=S/4kd(S:两极板正对面积,d:两极板间的垂直距离,:介电常数)

  14.带电粒子在电场中的加速(Vo=0):W=EK或qU=mVt2/2,Vt=(2qU/m)1/2

  15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

  类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)

  抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

  注:

  (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

  (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

  (3)常见电场的电场线分布要求熟记〔见图[第二册P98];

  (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

  (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

  (6)电容单位换算:1F=106F=1012PF;

  (7)电子伏(eV)是能量的单位,1eV=1.6010-19J;

  【恒定电流】

  1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

  2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值()}

  3.电阻、电阻定律:R=L/S{:电阻率(?m),L:导体的长度(m),S:导体横截面积(m2)}

  4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

  {I:电路中的总电流(A),E:电源电动势(V),R:外电路

电阻(),r:电源内阻()}

  5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

  6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(),t:通电时间(s)}

  7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

  8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),:电源效率}

  9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)

  电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+

  电流关系I总=I1=I2=I3I并=I1+I2+I3+

  电压关系U总=U1+U2+U3+U总=U1=U2=U3

  功率分配P总=P1+P2+P3+P总=P1+P2+P3+

  10.欧姆表测电阻

  (1)电路组成(2)测量原理

  两表笔短接后,调节Ro使电表指针满偏,得

  Ig=E/(r+Rg+Ro)

  接入被测电阻Rx后通过电表的电流为

  Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

  由于Ix与Rx对应,因此可指示被测电阻大小

  (3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

  (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

  11.伏安法测电阻

  电流表内接法:

  电压表示数:U=UR+UA

  电流表外接法:

  电流表示数:I=IR+IV

  Rx的测量值=U/I=(UA+UR)/IR=RA+RxR真

  Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)

  选用电路条件RxRA[或Rx(RARV)1/2]

  选用电路条件Rx

  12.滑动变阻器在电路中的限流接法与分压接法

  限流接法

  电压调节范围小,电路简单,功耗小

  便于调节电压的选择条件RpRx

  电压调节范围大,电路复杂,功耗较大

  便于调节电压的选择条件Rp

  注(1)单位换算:1A=103mA=1061kV=103V=106mA;1M=103k=106

  (2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;

  (3)串联合电阻大于任何一个分电阻,并联合电阻小于任何一个分电阻;

  (4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;

  (5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);

  【磁场】

  1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m

  2.安培力F=BIL;(注:LB){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

  3.洛仑兹力f=qVB(注V{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

  4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

  (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

  (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=m2r=mr(2/T)2=qVB;r=mV/qB;T=2(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

  注:

  (1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

  【电磁感应】

  1)E=n/t(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,/t:磁通量的'变化率}

  2)E=BLV垂(切割磁感线运动){L:有效长度(m)}

  3)Em=nBS(交流发电机最大的感应电动势){Em:感应电动势峰值}

  4)E=BL2/2(导体一端固定以旋转切割){:角速度(rad/s),V:速度(m/s)}

  (2)磁通量=BS{:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}

  (3)感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

  【交变电流(正弦式交变电流)】

  1.电压瞬时值e=Emsint电流瞬时值i=Imsin(=2f)

  2.电动势峰值Em=nBS=2BLv电流峰值(纯电阻电路中)Im=Em/R总

  3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2;I=Im/(2)1/2

  4.理想变压器原副线圈中的电压与电流及功率关系

  U1/U2=n1/n2;I1/I2=n2/n2;P入=P出

  5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损=(P/U)2R;(P损:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)

  6.公式1、2、3、4中物理量及单位::角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);

  S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。

  注:

  (1)交变电流的变化频率与发电机中线圈的转动的频率相同即:电=线,f电=f线;

  (2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;

  (3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;

  (4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;

  【电磁振荡和电磁波】

  1.LC振荡电路T=2f=1/T{f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}

  2.电磁波在真空中传播的速度c=3.00108m/s,=c/f{:电磁波的波长(m),f:电磁波频率}

  注:

  (1)在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大;

  (2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;

  【光的反射和折射(几何光学)】

  1.反射定律=i{反射角,i:入射角}

  2.绝对折射率(光从真空中到介质)n=c/v=sin/sin{光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速,:入射角,:折射角}

  3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n

  2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角

  注:

  (1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;

  (2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;

  【光的本性(光既有粒子性,又有波动性,称为光的波粒二象性)】

  1.两种学说:微粒说(牛顿)、波动说(惠更斯)

  2.双缝干涉:中间为亮条纹;亮条纹位置:=n暗条纹位置:=(2n+1)/2(n=0,1,2,3,……);条纹间距{:路程差(光程差);:光的波长;/2:光的半波长;d两条狭缝间的距离;l:挡板与屏间的距离}

  3.光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关,光的颜色按频率从低到高的排列顺序是:红、橙、黄、绿、蓝、靛、紫(助记:紫光的频率大,波长小)

  4.薄膜干涉:增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d=/4〔见第三册P25〕

  5.光的衍射:光在没有障碍物的均匀介质中是沿直线传播的,在障碍物的尺寸比光的波长大得多的情况下,光的衍射现象不明显可认为沿直线传播,反之,就不能认为光沿直线传播

  6.光的偏振:光的偏振现象说明光是横波

  7.光的电磁说:光的本质是一种电磁波。电磁波谱(按波长从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线、射线。红外线、紫外、线伦琴射线的发现和特性、产生机理、实际应用

  8.光子说,一个光子的能量E=h{h:普朗克常量=6.6310-34J.s,:光的频率}

  9.爱因斯坦光电效应方程:mVm2/2=h-W{mVm2/2:光电子初动能,h:光子能量,W:金属的逸出功}

  注:

  (1)要会区分光的干涉和衍射产生原理、条件、图样及应用,如双缝干涉、薄膜干涉、单缝衍射、圆孔衍射、圆屏衍射等;

  (2)其它相关内容:光的本性学说发展史/泊松亮斑/发射光谱/吸收光谱/光谱分析/原子特征谱线〔见第三册P50〕/光电效应的规律光子说〔见第三册P41〕/光电管及其应用/光的波粒二象性〔见第三册P45〕/激光〔见第三册P35〕/物质波〔见第三册P51〕。

  【原子和原子核】

  1.粒子散射试验结果a)大多数的粒子不发生偏转;(b)少数粒子发生了较大角度的偏转;(c)极少数粒子出现大角度的偏转(甚至反弹回来)

  2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)

  3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:h=E初-E末{能级跃迁}

  4.原子核的组成:质子和中子(统称为核子),{A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕}

  5.天然放射现象:射线(粒子是氦原子核)、射线(高速运动的电子流)、射线(波长极短的电磁波)、衰变与衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。射线是伴随射线和射线产生的〔见第三册P64〕

  6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}

  7.核能的计算E=mc2{当m的单位用kg时,E的单位为J;当m用原子质量单位u时,算出的E单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。

  注:

  (1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握;

  (2)熟记常见粒子的质量数和电荷数;

  (3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;

  (4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。(完)

  【左手定则:】

  左手定则(安培定则):已知电流方向和磁感线方向,判断通电导体在磁场中受力方向,如电动机。

  伸开左手,让磁感线穿入手心(手心对准N极,手背对准S极),四指指向电流方向,那么大拇指的方向就是导体受力方向。

  其原理是: 当你把磁铁的磁感线和电流的磁感线都画出来的时候,两种磁感线交织在一起,按照向量加法,磁铁和电流的磁感线方向相同的地方,磁感线变得密集;方向相反的地方,磁感线变得稀疏。磁感线有一个特性就是,每一条磁感线互相排斥!磁感线密集的地方压力大,磁感线稀疏的地方压力小。于是电流两侧的压力不同,把电流压向一边。拇指的方向就是这个压力的方向。

  【右手定则:】

  确定导体切割磁感线运动时在导体中产生的感应电流方向的定则。(发电机)

  右手定则的内容是:伸开右手,使大拇指跟其余四个手指垂直并且都跟手掌在一个平面内,把右手放入磁场中,让磁感线垂直穿入手心,大拇指指向导体运动方向,则其余四指指向感应电流的方向。

  总结:初中物理知识点归纳就为大家分享到这里了,希望对大家有所帮助,更多精彩内容请继续关注物理网!

初中物理知识点归纳小结 篇四

  初中物理全部的直线运动公式

  我们在初中物理的学习中,运动的知识包括了:匀变速直线运动、自由落体运动、竖直上抛运动和竖直下抛运动。

  1)匀变速直线运动

  1.平均速度V平=x/t(定义式)

  2.有用推论Vt^2-Vo^2=2ax

  3.中间时刻速度Vt/2=V平=(Vt+Vo)/2

  4.末速度Vt=Vo+at

  5.中间位置速度Vx/2=[(Vo^2+Vt^2)/2]^1/2

  6.位移x=V平t=Vot+1/2at^2=Vo*t+(Vt-Vo)/2*t x=(Vt^2-Vo^2)/2a

  7.加速度a=(Vt-Vo)/t (以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0)

  8.实验用推论Δs=aT^2 (Δs为连续相邻相等时间(T)内位移之差)

  9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s^2;末速度(Vt):m/s;时间(t)秒(s);位移(x):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

  注:

  (1)平均速度是矢量;

  (2)物体速度大,加速度不一定大;

  (3)a=(Vt-Vo)/t只是量度式,不是决定式;

  (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

  2)自由落体运动

  1.初速度Vo=0

  2.末速度Vt=gt

  3.下落高度h=gt方/2(从Vo位置向下计算)

  4.推论Vt方;=2gh

  注:

  (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

  (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

  3)竖直上抛运动

  1.位移x=Vot-(gt方2;)/2

  2.末速度Vt=Vo-gt (g=9.8m/s方≈10m/s方)

  3.有用推论Vt方;-Vo方;=-2gs

  4.上升最大高度Hmax=Vo方/2g(从抛出点算起)

  5.往返时间t=2Vo/g (从抛出落回原位置的时间)

  注:

  (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

  (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

  (3)上升与下落过程具有对称性,如在同点速度等值反向等。

  4)竖直下抛运动

  设初速度(即抛出速度)为Vo,因为a=g,取竖直向下的方向为正方向,则

  Vt=Vo+gt

  S=Vot+0.5gt方

  不管是匀变速直线运动、自由落体运动、竖直上抛运动或是竖直下抛运动,都有可能出现在中考中。

  初中物理电学知识点:磁感线

  下面是对物理电学中磁感线内容的知识讲解,希望同学们很好的掌握下面的知识。

  磁感线

  ①定义:根据小磁针在磁场中的排列情况,用一些带箭头的曲线画出来。磁感线不是客观存在的。是为了描述磁场人为假想的一种磁场。任何一点的曲线方向都跟放在该点的磁针北极所指的方向一致。

  ②方向:磁体周围的磁感线都是从磁体的北极出来,回到磁体的南极。

  ③典型磁感线:

  ④说明:

  A、磁感线是为了直观、形象地描述磁场而引入的带方向的曲线,不是客观存在的。但磁场客观存在。

  B、用磁感线描述磁场的方法叫建立理想模型法。

  C、磁感线是封闭的曲线。

  D、磁感线立体的分布在磁体周围,而不是平面的。

  E、磁感线不相交。

  F、磁感线的疏密程度表示磁场的强弱。

  希望上面对磁感线内容的知识讲解学习,同学们都能很好的掌握上面的内容,相信同学们会在考试中取得很好的成绩的。

  初中物理电学知识点:磁极受力

  关于物理中磁极受力的知识学习,我们做了下面的内容讲解。

  磁极受力

  在磁场中的某点,北极所受磁力的方向跟该点的磁场方向一致,南极所受磁力的方向跟该点的磁场方向相反。

  通过上面对磁极受力知识的内容讲解学习,希望同学们都能很好的掌握,相信同学们会学习的很好的吧。

  初中物理电学知识点:电磁铁

  下面是对电磁铁的内容知识讲解学习,同学们认真看看下面讲解的内容哦。

  电磁铁

  1电磁铁主要由通电螺线管和铁芯构成。在有电流通过时有磁性,没有电流通过时就失去磁性。

  2影响电磁铁磁性强弱的因素。

  电磁铁的磁性有无可以可以通过电流的有无来控制,而电磁铁的磁性强弱与电流大小和线圈匝数有关。

  3电磁铁的应用

  此外还有磁悬浮列车,扬声器(电讯号转化为声讯号),水位自动报警器,温度自动报警器,电铃,起重机。

  通过上面对电磁铁知识的内容讲解学习,相信同学们已经能很好的掌握了吧,希望同学们认真参加考试工作。

  初中物理电学知识点:磁场性质与方向

  关于物理中磁场性质与方向知识的讲解内容学习,我们做下面的讲解。

  磁场性质与方向

  基本性质:磁场对放入其中的磁体产生力的作用。磁极间的相互作用是通过磁场而发生的。

  方向规定:在磁场中的某一点,小磁针静止时北极所指的方向就是该点磁场的方向。

  以上对磁场性质与方向知识的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。

  初中物理电学知识点:电流的磁场

  对于电流的磁场知识点总结内容,希望同学们很好的掌握下面的内容。

  电流的磁场

  奥斯特实验:通电导线的周围存在磁场,称为电流的磁效应。该现象在1820年被丹麦的物理学家奥斯特发现。该现象说明:通电导线的周围存在磁场,且磁场与电流的方向有关。

  通电螺线管的磁场:通电螺线管的磁场和条形磁铁的磁场一样。其两端的极性跟电流方向有关,电流方向与磁极间的关系可由安培定则来判断。

  通过上面对电流的磁场知识的总结学习,相信同学们已经能很好的掌握了吧,希望上面的知识给同学的学习很好的帮助。

初中物理知识点归纳小结 篇五

  (1)电阻:表示导体对电流阻碍作用的大小。

  (2)单位:MΩ、kΩ、Ω。

  (3)影响因素:导体的电阻是导体本身的一种性质,它的大小决定于导体的材料、长度和横截面积,还与温度有关。

  (4)滑动变阻器

  ①原理:通过改变接入电路中的电阻线的长度来改变电阻。

  ②使用方法:根据铭牌选择合适的滑动变阻器;串联在电路中;接法:“一上一下”;接入电路前应将电阻调到最大。

  ③作用:通过改变电路中的电阻,逐渐改变电路中的电流和部分电路两端的电压;保护电路。

初中物理知识点归纳小结【优质5篇】

手机扫码分享

Top