高一数学必修一知识点 篇一:直线与函数
直线是数学中非常重要的一个概念,它在几何学、代数学和微积分等数学领域都有广泛的应用。在高一的数学必修一课程中,我们学习了直线与函数的关系,这是我们理解数学中一些重要概念和方法的基础。
首先,我们来回顾一下直线的定义。在平面几何中,直线是由无数个点构成的,并且任意两点之间的线段都在这条直线上。直线没有长度和宽度,可以延伸到无穷远。直线可以用不同的方法来描述,比如点斜式、一般式和截距式等。
在数学中,函数是一种非常重要的数学对象,它描述了一个变量如何根据另一个变量的变化而变化。直线与函数之间的关系是非常紧密的。事实上,直线可以看作是一种特殊的函数,即一次函数。一次函数的特点是变量的最高次数为1,即函数的表达式为y=ax+b。其中a称为斜率,它表示了直线的倾斜程度,b称为截距,它表示了直线与y轴的交点。
在学习直线与函数的关系时,我们主要掌握了以下几个重要的概念和方法。
第一,斜率。斜率是直线的一个重要特征,它决定了直线的倾斜程度。斜率可以通过直线上两点的坐标来计算,公式为:m=(y2-y1)/(x2-x1)。斜率可以为正、负或零,分别对应着直线向上倾斜、向下倾斜和水平。
第二,截距。截距是直线与y轴的交点,它表示了直线在y轴上的位置。截距可以通过直线上一点的坐标和斜率来计算,公式为:b=y-ax。
第三,方程。方程是描述直线与函数关系的一种数学表示方式。有三种常用的直线方程形式:点斜式、一般式和截距式。点斜式的一般形式为:y-y1=a(x-x1),其中(x1,y1)是直线上的一点,a是斜率。一般式的形式为:Ax+By+C=0,其中A、B、C是常数。截距式的形式为:y=ax+b,其中a是斜率,b是截距。
通过学习直线与函数的关系,我们可以更好地理解和应用数学知识。直线与函数的概念和方法不仅在数学中有重要意义,在实际生活中也有广泛的应用,比如物理学、经济学和工程学等领域。因此,我们要认真学习直线与函数的知识,掌握相关的概念和方法,为以后更深入的学习打下坚实的基础。
高一数学必修一知识点 篇二:数列与数列的表示方法
数列是数学中一个非常重要的概念,它是一组按照一定规律排列的数的集合。在高一的数学必修一课程中,我们学习了数列的概念和一些常见的表示方法,这对我们理解和应用数学知识起到了重要的作用。
首先,我们来回顾一下数列的定义。数列是由一组按照一定规律排列的数所组成的集合。数列中的每个数被称为数列的项,用a1, a2, a3, …来表示,其中a1表示数列的第一项,a2表示数列的第二项,以此类推。数列可以是有限的,也可以是无限的。
在数列的学习中,我们主要掌握了以下几个重要的概念和方法。
第一,公式。数列中的每一项都可以通过一个公式来表示,这个公式描述了数列中的数与项数之间的关系。常见的数列公式有等差数列公式和等比数列公式。等差数列是指数列中相邻两项之间的差值是一个常数,等比数列是指数列中相邻两项之间的比值是一个常数。
第二,通项公式。通项公式是一种特殊的数列公式,它可以直接计算数列中的任意一项。通项公式通常由数列的首项和公差(对于等差数列)或首项和公比(对于等比数列)来表示。
第三,求和公式。求和公式是一种用来计算数列中所有项的和的公式。对于等差数列和等比数列,我们可以通过求和公式来快速计算它们的和。求和公式通常由数列的首项、末项和项数来表示。
通过学习数列的概念和表示方法,我们可以更好地理解和应用数学知识。数列不仅在数学中有广泛的应用,还在实际生活中有许多应用,比如物理学、经济学和计算机科学等领域。因此,我们要认真学习数列的知识,掌握相关的概念和方法,为以后更深入的学习打下坚实的基础。
高一数学必修一知识点 篇三
人教版高一数学必修一知识点
上学期间,相信大家一定都接触过知识点吧!知识点就是学习的重点。哪些才是我们真正需要的知识点呢?以下是小编帮大家整理的高一数学必修一知识点,希望对大家有所帮助。
一、集合(jihe)有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1、元素的确定性;2、元素的互异性;3、元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋
记作a
∈A,相反,a不属于集合A记作aA列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}
4、集合的分类:
1、有限集含有有限个元素的集合
2、无限集含有无限个元素的集合
3、空集不含任何元素的集合例:{x|x2=-5}
(一)、集合间的基本关系
1、“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2、“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。AA
②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)
③如果AB,BC,那么AC
④如果AB同时BA那么A=B
3、不含任何元素的集合叫做空集,记为
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
二、集合的运算
1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集、
记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}、
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}、
3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,
A∪φ=A,A∪B=B∪A、
4、全集与补集
(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作:CSA即CSA={xxS且xA}
(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。
(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=⑶(CUA)∪A=U
三、函数的有关概念
1、函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域。
注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式。
定义域补充
能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于于1、(5)如果函数是由一些基本函数通过四则运算结合而成的,那么它的定义域是使各部分都有意义的x的值组成的集合。(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义。
(又注意:求出不等式组的解集即为函数的定义域。)
2、构成函数的三要素:定义域、对应关系和值域
再注意:(1)构成函数三个要素是定义域、对应关系和值域,由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)
(见课本21页相关例2)
值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域。(2)、应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。
3、函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象。
C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上即记为C={P(x,y)|y=f(x),x∈A}
图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。
(2)画法
A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来。
B、图象变换法(请参考必修4三角函数)
常用变换方法有三种,即平移变换、伸缩变换和对称变换
(3)作用:
1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。
发现解题中的错误。
4、快去了解区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示、
5、什么叫做映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB”
给定一个集合A到B的映射,如果a∈A,b∈B。且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象
说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。
6、常用的函数表示法及各自的优点:
○1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;○2解析法:必须注明函数的定义域;○3图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;○4列表法:选取的自变量要有代表性,应能反映定义域的特征。
注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值
补充一:分段函数(参见课本P24-25)
在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况。(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集、
补充二:复合函数
如果y=f(u),(u∈M),u=g(x),(x∈A),则y=f[g(x)]=F(x),(x∈A)称为f、g的复合函数。
例如:y=2sinXy=2cos(X2+1)
7、函数单调性
(1)、增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1
如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数,区间D称为y=f(x)的单调减区间。
注意:○1函数的单调性是在定义域内的某个区间上的性质,是函数的.局部性质;
○2必须是对于区间D内的任意两个自变量x1,x2;当x1
(2)图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。
(3)、函数单调区间与单调性的判定方法
(A)定义法:
○1任取x1,x2∈D,且x1
(B)图象法(从图象上看升降)_
(C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:
函数单调性
u=g(x)增增减减
y=f(u)增减增减
y=f[g(x)]增减减增
注意:1、函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集。2、还记得我们在选修里学习简单易行的导数法判定单调性吗?
8、函数的奇偶性
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数。
(2)、奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数。
注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。
○2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称。
总结:利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数、
注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件。首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数、若对称,(1)再根据定义判定;(2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定。
9、函数的解析表达式
(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域。
(2)、求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)
10、函数最大(小)值(定义见课本p36页)
○1利用二次函数的性质(配方法)求函数的最大(小)值○2利用图象求函数的最大(小)值○3利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);