高一数学下册知识点【优质6篇】

时间:2012-02-06 05:23:39
染雾
分享
WORD下载 PDF下载 投诉

高一数学下册知识点 篇一

高一数学下册是数学学科的重要阶段,学生将进一步学习和掌握更加深入的数学知识和技巧。下面将介绍一些高一数学下册的重要知识点。

一、函数与方程

函数是高一数学下册的核心概念之一。学生将学习如何确定函数的定义域、值域、奇偶性以及函数的图像特征。此外,学生还将学习如何解一元二次方程、一元三次方程等高阶方程,并掌握解方程的方法和技巧。

二、三角函数

三角函数是高一数学下册的另一个重要知识点。学生将学习正弦函数、余弦函数、正切函数等基本的三角函数,并学习如何利用三角函数解决实际问题。此外,学生还将学习三角函数的图像特征、周期性以及三角恒等式等相关内容。

三、平面向量

平面向量也是高一数学下册的重要知识点之一。学生将学习向量的定义、加法、减法、数量积、向量积等基本概念和运算法则。此外,学生还将学习如何利用平面向量解决几何问题,并学习平面向量的应用。

四、数列与数学归纳法

数列与数学归纳法是高一数学下册的另一个重要知识点。学生将学习等差数列、等比数列等基本数列的性质和运算法则。此外,学生还将学习数列极限、递推公式以及数学归纳法的应用。

五、概率与统计

概率与统计是高一数学下册的最后一个重要知识点。学生将学习如何计算事件的概率、条件概率、独立事件等基本概念和计算方法。此外,学生还将学习如何进行统计分析、绘制统计图表以及利用统计数据解决实际问题。

以上是高一数学下册的一些重要知识点,每个知识点都对学生的数学学习和思维能力的提升起到关键作用。在学习过程中,学生要注重理解概念、掌握方法,并通过大量的练习巩固所学知识。只有不断地学习和实践,才能在高一数学下册取得更好的成绩。

高一数学下册知识点 篇二

高一数学下册是学习数学的关键阶段,学生将开始接触更加深入和复杂的数学知识。下面将介绍一些高一数学下册的重要知识点。

一、函数与方程

函数与方程是高一数学下册的核心内容。学生将学习如何确定函数的定义域、值域以及函数的图像特征。此外,学生还将学习一元二次方程、一元三次方程等高阶方程的解法和技巧。

二、三角函数

三角函数是高一数学下册的另一个重要知识点。学生将学习正弦函数、余弦函数、正切函数等基本的三角函数,并学习如何利用三角函数解决实际问题。此外,学生还将学习三角函数的图像特征、周期性以及三角恒等式等相关内容。

三、平面向量

平面向量是高一数学下册的重要内容之一。学生将学习向量的定义、加法、减法、数量积、向量积等基本概念和运算法则。此外,学生还将学习如何利用平面向量解决几何问题,并学习平面向量的应用。

四、数列与数学归纳法

数列与数学归纳法是高一数学下册的另一个重要知识点。学生将学习等差数列、等比数列等基本数列的性质和运算法则。此外,学生还将学习数列极限、递推公式以及数学归纳法的应用。

五、概率与统计

概率与统计是高一数学下册的最后一个重要知识点。学生将学习如何计算事件的概率、条件概率、独立事件等基本概念和计算方法。此外,学生还将学习如何进行统计分析、绘制统计图表以及利用统计数据解决实际问题。

以上是高一数学下册的一些重要知识点,每个知识点都对学生的数学学习和思维能力的提升起到关键作用。学生应该注重理解概念、掌握方法,并通过大量的练习巩固所学知识。只有不断地学习和实践,才能在高一数学下册取得更好的成绩。

高一数学下册知识点 篇三

  空间直角坐标系定义:

  过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位、这三条轴分别叫做x轴横轴)、y轴纵轴、z轴竖轴;统称坐标轴、通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。

  1、右手直角坐标系

  ①右手直角坐标系的建立规则:x轴、y轴、z轴互相垂直,分别指向右手的拇指、食指、中指;

  ②已知点的坐标P(x,y,z)作点的方法与步骤(路径法):

  沿x轴正方向(x>0时)或负方向(x<0时)移动|x|个单位,再沿y轴正方向(y>0时)或负方向(y<0时)移动|y|个单位,最后沿x轴正方向(z>0时)或负方向(z<>

  ③已知点的位置求坐标的方法:

  过P作三个平面分别与x轴、y轴、z轴垂直于A,B,C,点A,B,C在x轴、y轴、z轴的坐标分别是a,b,c则a,b,c就是点P的坐标。

  2、在x轴上的点分别可以表示为a,0,0,0,b,0,0,0,c。

  在坐标平面xOy,xOz,yOz内的点分别可以表示为a,b,0,a,0,c,0,b,c。

  3、点Pa,b,c关于x轴的对称点的坐标为a,-b,-c;

  点Pa,b,c关于y轴的对称点的坐标为-a,b,-c;

  点Pa,b,c关于z轴的对称点的坐标为-a,-b,c;

  点Pa,b,c关于坐标平面xOy的对称点为a,b,-c;

  点Pa,b,c关于坐标平面xOz的对称点为a,-b,c;

  点Pa,b,c关于坐标平面yOz的对称点为-a,b,c;

  点Pa,b,c关于原点的对称点-a,-b,-c。

  4、已知空间两点Px1,y1,z1,Qx2,y2,z2,则线段PQ的中点坐标为

  5、空间两点间的距离公式

  已知空间两点Px1,y1,z1,Qx2,y2,z2,则两点的距离为特殊点Ax,y,z到原点O的距离为

  6、以Cx0,y0,z0为球心,r为半径的球面方程为

  特殊地,以原点为球心,r为半径的球面方程为x2+y2+z2=r2

  练习题:

  选择题:

  1.在空间直角坐标系中,已知点P(x,y,z),给出下列4条叙述:①点P关于x轴的对称点的坐标是(x,-y,z)②点P关于yOz平面的对称点的坐标是(x,-y,-z)③点P关于y轴的对称点的坐标是(x,-y,z)④点P关于原点的对称点的坐标是(-x,-y,-z)其中正确的个数是()

  A.3B.2C.1D.0

  2.若已知A(1,1,1),B(-3,-3,-3),则线段AB的长为()

  A.43

  B.23

  C.42

  D.32

  3.已知A(1,2,3),B(3,3,m),C(0,-1,0),D(2,―1,―1),则()

  A.|AB|>|CD|

  B.|AB|<|CD|C.|AB|≤|CD|

  D.|AB|≥|CD|

  4.设A(3,3,1),B(1,0,5),C(0,1,0),AB的中点M,则|CM|?()

  A.5

  B.2

  C.3

  D.4

高一数学下册知识点 篇四

  1.函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(-x);

  (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2.复合函数的有关问题

  (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3.函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

  (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

  4.函数的周期性

  (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

  (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

  (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

  5.方程k=f(x)有解k∈D(D为f(x)的值域);

  a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  (1)(a>0,a≠1,b>0,n∈R+);

  (2)logaN=(a>0,a≠1,b>0,b≠1);

  (3)logab的符号由口诀“同正异负”记忆;

  (4)alogaN=N(a>0,a≠1,N>0);

  6.判断对应是否为映射时,抓住两点:

  (1)A中元素必须都有象且唯一;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  7.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  8.对于反函数,应掌握以下一些结论:

  (1)定义域上的单调函数必有反函数;

  (2)奇函数的反函数也是奇函数;

  (3)定义域为非单元素集的`偶函数不存在反函数;

  (4)周期函数不存在反函数;

  (5)互为反函数的两个函数具有相同的单调性;

  (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

  9.处理二次函数的问题勿忘数形结合

  二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

  10依据单调性

  利用一次函数在区间上的保号性可解决求一类参数的范围问题;

  11恒成立问题的处理方法:

  (1)分离参数法;

  (2)转化为一元二次方程的根的分布列不等式(组)求解;

  练习题:

  1.(-3,4)关于x轴对称的点的坐标为_________,关于y轴对称的点的坐标为__________,

  关于原点对称的坐标为__________.

  2.点B(-5,-2)到x轴的距离是____,到y轴的距离是____,到原点的距离是____

  3.以点(3,0)为圆心,半径为5的圆与x轴交点坐标为_________________,

  与y轴交点坐标为________________

  4.点P(a-3,5-a)在第一象限内,则a的取值范围是____________

  5.小华用500元去购买单价为3元的一种商品,剩余的钱y(元)与购买这种商品的件数x(件)

  之间的函数关系是______________,x的取值范围是__________

  6.函数y=的自变量x的取值范围是________

  7.当a=____时,函数y=x是正比例函数

  8.函数y=-2x+4的图象经过___________象限,它与两坐标轴围成的三角形面积为_________,

  周长为_______

  9.一次函数y=kx+b的图象经过点(1,5),交y轴于3,则k=____,b=____

  10.若点(m,m+3)在函数y=-x+2的图象上,则m=____

  11.y与3x成正比例,当x=8时,y=-12,则y与x的函数解析式为___________

  12.函数y=-x的图象是一条过原点及(2,___)的直线,这条直线经过第_____象限,

  当x增大时,y随之________

  13.函数y=2x-4,当x_______,y0,b0,b>0;C、k

高一数学下册知识点 篇五

  函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

  (2)画法

  A、描点法:

  B、图象变换法

  常用变换方法有三种

  1)平移变换

  2)伸缩变换

  3)对称变换

  4.高中数学函数区间的概念

  (1)函数区间的分类:开区间、闭区间、半开半闭区间

  (2)无穷区间

  5.映射

  一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”

  对于映射f:A→B来说,则应满足:

  (1)函数A中的每一个元素,在函数B中都有象,并且象是的;

  (2)函数A中不同的元素,在函数B中对应的象可以是同一个;

  (3)不要求函数B中的每一个元素在函数A中都有原象。

  6.高中数学函数之分段函数

  (1)在定义域的不同部分上有不同的解析表达式的函数。

  (2)各部分的自变量的取值情况.

  (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

  补充:复合函数

  如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

高一数学下册知识点 篇六

  1.“包含”关系—子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2.“相等”关系(5≥5,且5≤5,则5=5)

  实例:设A={x|x2-1=0}B={-1,1}“元素相同”

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  ①任何一个集合是它本身的子集。AíA

  ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AíB,BíC,那么AíC

  ④如果AíB同时BíA那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

高一数学下册知识点【优质6篇】

手机扫码分享

Top