六年级数学鼎尖教案答案例文(精选3篇)

时间:2013-09-08 04:14:45
染雾
分享
WORD下载 PDF下载 投诉

六年级数学鼎尖教案答案例文 篇一

标题:解决问题的思维方式在数学中的应用

在数学学科中,解决问题是一个重要的学习目标。六年级学生在学习数学的过程中,需要掌握一种有效的思维方式来解决各种问题。本文将介绍一种在数学中应用的解决问题的思维方式,并通过一个例子来说明。

首先,解决问题的思维方式需要学生具备观察、分析和推理的能力。在解决数学问题时,学生应该仔细观察问题的条件和要求,分析问题的关键点,并通过推理找到解决问题的方法。例如,当遇到一个几何问题时,学生可以观察图形的特征,分析图形的属性,然后通过推理得出结论。

其次,解决问题的思维方式需要培养学生的创造力和灵活性。数学问题往往有多种解决方法,学生需要灵活运用各种数学概念和方法,发挥自己的创造力来解决问题。例如,在解决一个数学应用题时,学生可以尝试不同的计算方法,或者运用不同的数学概念来解决问题。

最后,解决问题的思维方式需要学生具备坚持和耐心的品质。解决数学问题可能需要多次尝试和反复推敲,学生不应该轻易放弃。他们需要坚持思考,耐心寻找解决问题的方法,并且相信自己一定能够找到解决问题的答案。在解决问题的过程中,学生还可以与同学进行合作,互相讨论和分享思路,从而提高解决问题的效率和质量。

综上所述,解决问题的思维方式在六年级数学学习中起着重要的作用。学生通过观察、分析和推理来解决问题,培养创造力和灵活性,坚持和耐心地寻找解决问题的方法。这种思维方式不仅可以帮助学生在数学学习中取得好的成绩,还可以培养他们的综合素质和解决实际问题的能力。

六年级数学鼎尖教案答案例文 篇二

标题:数学学习中的实践应用与解决问题

在六年级数学学习中,实践应用和解决问题是不可或缺的一部分。本文将介绍一种在数学学习中常见的实践应用和解决问题的方法,并通过一个例子来说明。

首先,实践应用是指将数学知识和技能应用到实际问题中。六年级学生通过实际问题的解决,可以更好地理解和掌握数学知识。例如,在学习面积和周长时,学生可以通过实地测量和计算来求解实际图形的面积和周长。通过实践应用,学生能够将抽象的数学概念转化为具体的实际问题,提高数学学习的实效性和实用性。

其次,解决问题是数学学习中的重要内容。学生通过解决各种问题,培养了分析和推理问题的能力,提高了数学思维的灵活性和创造力。例如,当遇到一个多步骤的数学问题时,学生需要先分析问题的条件和要求,然后通过推理找到解决问题的方法,最后进行计算和验证。通过解决问题,学生不仅巩固了已学的知识,还能够拓展思维,培养解决实际问题的能力。

最后,实践应用和解决问题需要学生具备合作与交流的能力。在解决问题的过程中,学生可以与同学进行合作,互相讨论和分享思路,共同解决问题。通过合作与交流,学生能够借鉴他人的思路和方法,拓宽自己的思维,提高解决问题的效率和质量。同时,合作和交流也培养了学生的团队合作精神和沟通能力。

综上所述,六年级数学学习中的实践应用和解决问题是非常重要的。学生通过实践应用将数学知识应用到实际问题中,提高学习的实效性和实用性;通过解决问题培养了分析和推理问题的能力,提高数学思维的灵活性和创造力;同时,学生通过合作与交流提高解决问题的效率和质量。这种实践应用和解决问题的方法不仅可以帮助学生在数学学习中取得好的成绩,还可以培养他们的综合素质和解决实际问题的能力。

六年级数学鼎尖教案答案例文 篇三

教案撰写的最后一项内容,即教学后记。送项内容主要是在教学之后进行撰写,是教师对于自己的教学进行自我评价,对于教学中的亮点和不足进行总结和反思。今天小编在这里整理了一些六年级数学鼎尖教案答案2021例文,我们一起来看看吧!

六年级数学鼎尖教案答案2021例文1

一、教学内容

抽屉原理。

二、教学目标

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过“抽屉原理”的灵活应用感受数学的魅力。

三、具体编排

1.例1及“做一做”。

例1借助把4枝铅笔放进3个文具盒中,不管怎么放,总有一个文具盒里至少放进2枝铅笔的情境,介绍了一类较简单的“抽屉问题”。为解释这一现象,教材呈现了两种思考方法:“枚举法“与“反证法”或“假设法”。

教学时,教师可适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解“抽屉问题”的“一般化模型”。

“做一做”中安排了一个“鸽巢问题”,学

生可利用例题中的方法迁移类推。

2.例2及“做一做”。

本例介绍了另一种类型的“抽屉问题”,即“把多于个的物体任意分放进个空抽屉(是正整数),那么一定有一个抽屉中放进了至少(+1)个物体。”教材提供了把5本书放进2个抽屉,不管怎么放,总有一个抽屉里至少放3本书的情境。仍用枚举法及假设法探究该问题,并用有余数除法的形式5÷2=2……1表达出假设法的思路,并在此基础上,让学生类推解决“把7本书、9本书放进2个抽屉的问题”。

教学时,引导学生理解假设法最核心的思路是把书尽量多地“平均分”给各个抽屉。

“做一做”中“抽屉数”变成了3,要求学生在例2思考方法的基础上进行迁移类推。

3.例3。

例3是“抽屉原理”的具体应用,也是运用“抽屉原理”进行逆向思维的一个典型例子。

教学时,先引导学生思考这个问题与“抽屉原理”有怎样的联系,可先让学生自由猜测、再验证。逐步将“摸球问题”与“抽屉问题”联系起来,找出这里的“抽屉”是什么,“抽屉”有几个,再应用前面所学的“抽屉原理”进行反向推理。

四、教学建议

1. 应让学生初步经历“数学证明”的过程。

在小学阶段,虽然并不需要学生对涉及到“抽屉原理”的相关现象给出严格的、形式化的证明,但仍可引导学生用直观的方式进行“就事论事”式的解释。教学时可以鼓励学生借助学具、实物操作或画草图的方式进行“说理”。通过这样的方式,有助于逐步提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

2. 应有意识地培养学生的“模型”思想。

“抽屉问题”的变式很多,应用更具灵活性。但能否将这个具体问题和“抽屉问题”联系起来,能否找到问题中的具体情境和“抽屉问题”的“一般化模型”之间的内在关系是影响能否解决该问题的关键。教学时,要引导学生先判断某个问题是否属于用“抽屉原理”可以解决的范畴,如果可以,再思考如何寻找隐藏在其背后的“抽屉问题”的一般模型。

3. 要适当把握教学要求。

“抽屉原理”的应用广泛且灵活多变,因此,用“抽屉原理”来解决实际问题时,有时要找到实际问题与“抽屉问题”之间的联系并不容易。因此,教学时,不于追求学生“说理”的严密性,只要能结合具体问题把大致意思说出来就可以了,更要允许学生借助实物操作等直观方式进行猜测、验证。

六年级数学鼎尖教案答案2021例文2

教学目标

1.使学生了解百分数的意义,会正确读写百分数。

2.指导学生在理解百分数也是表示两个量间的倍数关系的同时,认识事物间的相互联系及发展变化规律,培养学生分析、概括能力。

教学重点和难点

理解百分数的意义。

教学过程

(一)复习准备

1.在日常生活中,同学们会经常看到或听到这样一些数:(出示投影)

(1)在12届亚运会中,各国金牌情况如下:中国占40.3%,韩国占18.5%,日本占17.4%,其它国家占23.8%。

(2)五(三)班学生在期末考试中,85%的人获优秀成绩,15%的人成绩达标。

提问:谁知道这些数是什么数?

师:这就是百分数。在生产、工作和生活中,进行调查统计、分析比较时,经常要用到百分数。什么是百分数?怎么读写百分数,是我们这节课研究的内容。

板书:百分数的意义和写法。

2.在学习新课之前,我们还要来复习有关知识。

提问:这两道题的结果表示的意义相同吗?

是一个分率。)

导入新课:由上面两道题可以看出,分数既可以表示量,又可以表示两数量之间的倍数关系。请你们看看下面题中的分数表示什么?我们今天学习的百分数又表示什么?

(二)讲授新课

(投影)

1.某小学六年级的100名学生中有三好学生17人,五年级的200名学生中有三好学生30人。六年级三好生占全年级的几分之几?五年级三好生占全年级的几分之几?

提问:第一问怎么列式解答?

提问:五年级三好生占全年级人数的几分之几?怎么做?

提问:根据所得的数,你能一眼看出哪个年级三好生人数的比例高吗?你能直接比较它们的大小吗?为什么?(分子不同,分母也不同,不容易看出。)

讨论:怎样做才容易比较这两个分数的大小呢?(通分,化成分母相同的分数。)根据什么?(分数的基本性质。)

师小结:像这样分母不同的分数进行比较时,一般要进行通分,使分母相同。尤其是在日常生活、生产、科研中,通常把分母化成是100的分数,这样便于比较。下面我们把这两个数变成分母是100的分数。

几,也表示三好生和年级总人数之间的倍数关系。)

2.练习。(出示投影)

(1)一个工厂从一批产品中抽出500件,经过检验,有490件合格。合格的比率是多少?

品与产品总数之间的倍数关系。)

(2)学校图书馆有文艺书900本,有故事书450本,故事书占文艺书的几分之几?

3.概括百分数的意义。

什么?(表示一个数是另一个数的百分之几)

提问:请你们想一想,什么是百分数?百分数表示两个量之间什么关系?(分组讨论)

小结:表示一个数是另一个数的百分之几的数叫做百分数,百分数也就叫做百分率或百分比。

提问:百分数表示两个数之间什么关系?(倍数关系。)应不应该有单位名称?

4.学习百分数的读法和写法。

提问:百分数和分数比,相同点和不同点是什么?(相同点:都表示两个数量之间的倍数关系。不同点:形式不一样。)

百分数应该用什么形式表示呢?

(1)写法:写百分数时,通常不写成分数形式,而采用(%)表示。写百分数时,去掉分数线和分母,在分子后面添上百分号。例如:

(板书)百分之九十        写作90%;

百分之六十四           写作64%;

百分之一百零八点五         写作108.5%。

(2)读法:读百分数时,只要把百分号看作分母是100,百分号前面的数看作分子,就可以和分数一样读了。例如:

17%      ?读作百分之十七;

0.03%       读作百分之零点零三;

15.2%       读作百分之十五点二。

5.百分数与分数的联系和区别。(讨论)

百分数是分数中的一种情况。分数既可以表示一个具体数量,又可以表示一个数是另一个数的几分之几,所以分数后面既可以有计量单位,也可以没有计量单位;而百分数只表示两个量之间的倍数关系,所以没有计量单位。

(三)巩固练习

1.第125页“做一做”,在书上做,然后订正。

2.第126页第1,2题,做在练习本上。

3.(投影)判断:

(1)分母是100的分数叫做百分数。

(    )

(    )

(3)百分数的分母一定是100。

(    )

(4)五(三)班45人,体育全部达标,达标率100%。

(    )

4.填空:

(1)一本书看了40%,表示(    )占(    )的40%。如果书是100页,看了(    )页;书是 200页,看了(    )页。

(2)一条公路,修了25%,还剩(    )%没修。

(3)火车的速度比汽车快25%,火车的速度是汽车的(    )%。

这是一道难度较大的题,因为有了分数应用题的基础,可让学生讨论后解答。

5.一个工厂十月份的产值相当于九月份的百分之一百零八,写出这个百分数。十月份的产值比九月份的多了还是少了?

(四)课堂总结

这节课我们学习了哪些知识?(百分数的意义、读法和写法。)

你知道人们在日常生产和生活中都在什么时候用百分数吗?(在计算优秀率、合格率、体育达标率等方面。)

师:百分数的应用十分广泛,所以希望同学们学好百分数并学会在实际中应用。

(五)布置作业

(略)

课堂教学设计说明

本课引用日常生产、生活中运用的百分数的例子,导入新课,引起学生的学习兴趣。又通过对分数意义的复习,引出百分数的意义,为突破教学的重点、难点做了铺垫。同时初步渗透转化思想,使学生易于接受新知识。教案通过对分数、百分数的分析、比较,加深了学生对百分数意义的理解。在练习过程中,重点突出了百分数意义的练习,达到了在知识点的关键处或难点处进行重点练习的目的。在教案中列举了一部分生活中使用百分数的例子,目的是引起学生对百分数的兴趣,了解百分数在日常生产生活中的重要作用,让学生体会到百分数就在我们身边,逐步学会使用百分数。

六年级数学鼎尖教案答案2021例文3

教学目的:

认识扇形统计图的特点和作用,能看懂并能简单地分析扇形统计图所反映的情况。

教学重点:

看懂并能简单地分析扇形统计图所反映的情况。

教学难点:

看懂并能简单地分析扇形统计图所反映的情况。

教学过程:

一、导入

1、同学们喜欢什么运动项目?我们利用以前学过的知识能不能很好地表示出这些情况?

2、收集和整理数据,统计全班最喜欢的各项运动项目的人数,制成条形统计图。

二、新授

1、观察条形统计图,你从中得到了哪些有用的信息?

2、从条形统计图中,还有哪些信息不容易表示出来?(引发学生思考,从而发现条形统计图不容易看出各部分量与总量的关系)

3、生成扇形统计图。引导学生观察从扇形统计图中,你得到了哪些游泳的数学信息?(学生甘居直观观察,发表见解)

4、根据统计图上表示的情况,你对我班同学有哪些建议?

5、回顾知识生成,归纳扇形统计图的特点和作用。

6、“做一做”:自主看图,说一说,你从图中得到了哪些有价值的数学信息?(分析后根据题意自主计算,全班核对)

三、应用练习

1、练习二十五第1题:自主看图,说一说李明同学一天的作息安排是否合理,从中你能提出哪些合理化建议。(引导学生说说怎样安排时间才合理,才能做到劳逸结合)

2、练习二十五第2题:自主看图,说一说从图中得到哪些信息,在小组内交流。(使学生体会到父母的辛苦和对自己的爱,激发学生对父母、对家庭的爱)

四、总结

学生总结、比较扇形统计图和条形统计图及折线统计图相比有何特点。

教学追记:

扇形统计图的教学,我主要联系了条形统计图和折线统计图的特点,让学生通过例题看到:在表示全班人数的圆中,用扇形可以清楚地表示出最喜欢的各种运动项目的人数占全班总人数的百分比。从而使学生真切地体会到扇形统计图的特点,并通过看图回答问题并提出问题,加深对扇形统计图特点的认识。

六年级数学鼎尖教案答案2021例文4

教学内容:课本10页例3、做一做、练习二第3、5、6、7题。

教学目标:

1、让学生在已有的分数乘整数的基础上,通过小组合作,自主探究建构,使学生理解一个数乘分数的意义,掌握分数乘分数的计算方法,能够应用分数乘分数的计算法则,比较熟练地进行计算。

2、让学生在合作学习、汇报展示、互动交流中,体验学习带来的喜悦,培养学生的学科兴趣和学习能力。

3、让学生在课堂学习中感悟到数学知识的魅力,领略到美。

教学重点:让学生理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点:总结分数乘分数的计算方法。

教学过程:

一、复习引入,提出学习目标。

1、复习。

计算下列各题并说出计算方法。

1/10×  5/8×5 3/7×

上面各题都是分数乘以整数,说一说分数乘整数的意义。

2、揭题:分数乘分数

3、提出学习目标。

让学生先说一说,再出示学习目标

(1)一个数乘分数的意义与分数乘整数的意义是否相同。

(2) 分数乘分数的计算方法

二、展示学习成果。

1、小组内个人展示

学生独立自学、完成课本10页例3、“做一做”(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨)

2、全班展示

(1)一个数乘分数的意义展示

1/5×3/4就是求1/5的3/4是多少; 1/3×1/4就是求1/3的1/4是多少

(2)算法展示

生1:不能约分,直接分子乘分子,分母乘分母。

1/5×3/4=1×3/5×4=3/20

生2:先计算出结果,再进行约分。

8/9×3/10=8×3/9×10=24/90=4/15

生3:在计算过程中能约分的先约分,再计算。

8/9×3/10 3与9先约分,8与10先约分,再计算。

2)比较二、三两种计算方法,选择算法。

通过对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

(3)错例展示:

错例1:约分后,把分子与分子相加,分母与分母相加; 错例2:学生没把计算结果约成最简分数。

3、学生质疑问难,激发知识冲突。

(1)针对同学的展示,学生自由质疑问难。

(2)教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的展示有什么想法与建议吗?

4、引导归纳一个数乘分数的意义和计算方法。

(1)意义:一个数乘分数,表示求这个数的几分之几是多少。

(2)计算法则:分数乘分数,用分子乘分子,分母乘分母,能约分的先约分,再计算。

三、拓展知识外延

1、完成课本12至13页练习二第3、6题。

2、生活中的数学

(1)一个长方形长3/5分米,宽1/2分米,它的周长、面积各是多少?

(2)用三个同样大小的正方形可以拼成一个新的图形。如果正方形的边长是3/5 分米,那么拼成的新图形的周长是多少?

四、总结反思,激励评价。

五、布置作业:

1、列式计算

(1)的是多少?

(2)千克的是多少?

(3)小时的是多少?

2、智力冲浪:甲乙两个仓库,甲仓存粮30吨,如果从甲仓中1/5取出放入乙仓,则两仓存粮数相等.两仓一共存粮多少千克?(A类同学做)

六年级数学鼎尖教案答案2021例文5

【学习内容】

《义务教育课程标准实验教科书 数学》(人教版)六年级下册第41页。

【教材分析】

“比例的基本性质”是在学生学习了比例的意义基础上进行教学的,是对比例的意义的深化和发展,是后面学习解比例知识的基础。它起着承前启后的作用,是小学阶段学习比例初步知识的一项重要内容。

【设计理念】

数学学习是一个学生自发探究的过程,因此,要让学生经历“自主发现问题——自主提出猜想——自主实施验证——自主归纳结论”的过程掌握比例的基本性质;本课的设计旨在为学生的探究学习创设简洁、开放的情境,让学生充分经历探究过程,学会探索方法,体验数学思想,发展数学素养。

【学习目标】

1.进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

4 能根据乘法等式写出正确的比例。

【评价设计】

1.通过练习1检测目标1的达成;

2.通过练习1检测目标2的达成;

3.通过练习1、2、4检测目标3的达成.

4.通过练习3检测目标4的达成.

【学习重点】探索并掌握比例的基本性质。

【学习难点】 能运用比例的基本性质判断两个比能否组成比例。

【教学准备】课件

【学习过程】

一、认识比例各部分的名称

1、复习

(1)什么叫做比例?什么样的两个比才能成比例?

(2)应用比例的意义,判断下面的比能否组成比例。

6:15和8:20 0.5:0.4和2:25

2、介绍比例各部分的名称

4:5=8:10 中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。

3、你能说出下面比例的内项和外项各是多少吗?

(1)1.4: 1 = 7 :5

二、探究比例的基本性质

1、猜数

(1)老师这里也有一个比例“12∶□=□∶2”,不过它的两个內项看不清了,想一想,这两个内项可能是哪两个数?(如1和24,2和12,……)

(2)追问:正确吗?为什么?(求比值判断)

(3)还有不同答案吗?

(4)你能举出项不是整数的例子吗?

(5)这样的例子举得完吗?

2、猜想

仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积;两个內项的位置可以交换……)

3、验证

(1)是不是所有的比例都有这样的规律呢,有什么好办法?(举例验证)

(2)应该怎样举例呢?你有什么好方法?

示范:①任意写一个简单的比;②求出比值;③根据比值写出另一个比的一项,求出另一项;④组成比例;⑤算出外项的积和內项的积。

(3)合作要求

①前后4个同学为一个小组;

②每个同学写出一个比例,小组内交换验证。

③通过举例验证,你们能得出什么结论?

4、归纳

我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。(板书:比例的基本性质)

5、完善

(1)如果用字母表示比例的四个项,即a:b=c:d,那么,比例的基本性质可以表示成什么?(ad=bc或bc=ad)

(2)老师这里也有一个比例0:3=0:4,可以吗?3:0=4:0呢?

(3)比例中两个比的后项都不能为0。

6、如果比例写成分数形式,这怎么相乘?(交叉相乘)

三、巩固练习

1、判断下面哪组中的两个比可以组成比例。

示范:6:3和8:5

先让学生尝试判断,再交流,明确思考方法。

应用比例的基本性质判断

(2)还可以用什么方法来判断?用求比值的方法判断能否组成比例可以吗?(将学生分两大组,分别用上述两种方法进行判断)

(3)这两种方法,你更喜欢哪种?为什么?

2、在比例中,两个外项的积等于两个內项的积,如果知道两个外项的积和两个內项的积,你会写比例吗?

某同学根据“2×9=3×6”写出了比例,猜猜他可能是怎么写得?请在练习本上写一写。

追问:你为什么写得那么块?有什么窍门吗?(强调有序思考)

补问:根据这个乘法等式,一共可以写多少个比例?

3、如果a×2=b×4,则a:b=( ):( );

如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?

那么a、b还可能是多少?你发现了什么?

4、猜猜我是谁?

6:( )=5: 4

延伸:如果把 “( )”改为“x”就是我们下节课要学习的知识:解比例。

四、分享收获 畅谈感想

(1) 说一说比例的基本性质。

(2) 你可以用什么方法来判断两个比能否组成比例?


六年级数学鼎尖教案答案例文

六年级数学鼎尖教案答案例文(精选3篇)

手机扫码分享

Top