有理数的加法说课稿 篇一
引言:
大家好,我是XX,今天我将为大家讲解有理数的加法。有理数是数学中重要的概念之一,对于学生来说,掌握有理数的加法是很基础也很重要的一项技能。因此,我将通过一些具体的例子和练习,帮助学生理解和掌握有理数的加法运算。
一、有理数的概念
首先,我们需要明确有理数的概念。有理数包括正有理数、负有理数和零,它们可以用分数或小数表示。有理数可以进行四则运算,其中加法是最基础的运算之一。
二、有理数的加法规则
接下来,我将介绍有理数的加法规则。当我们进行有理数的加法运算时,有以下几种情况:
1. 正数加正数:直接将两个正数相加即可,结果仍为正数。
2. 负数加负数:直接将两个负数相加即可,结果仍为负数。
3. 正数加负数:将两个数的绝对值相减,结果的符号取决于绝对值较大的数的符号。
4. 零加任意数:任何数加上零,结果仍为该数本身。
三、例题演练
为了帮助学生更好地理解和掌握有理数的加法规则,我将通过一些例题演练来进行讲解。
例题1:计算-3 + 5。
解析:-3是负数,5是正数。按照有理数的加法规则,我们将两个数的绝对值相加,结果的符号取决于绝对值较大的数的符号。所以,-3 + 5 = 2。
例题2:计算7 + (-9)。
解析:7是正数,-9是负数。同样按照有理数的加法规则,我们将两个数的绝对值相加,结果的符号取决于绝对值较大的数的符号。所以,7 + (-9) = -2。
通过这些例题演练,学生可以更直观地理解有理数的加法规则,并且能够通过计算来得到正确的结果。
四、总结
有理数的加法是数学中的基础知识,对于学生来说掌握有理数的加法规则是非常重要的。在学习过程中,我们可以通过一些例题演练来帮助学生理解和掌握有理数的加法运算。希望通过今天的讲解,能够帮助学生更好地掌握有理数的加法。
有理数的加法说课稿 篇二
引言:
大家好,我是XX,今天我将为大家讲解有理数的加法。有理数的加法是数学中的基础运算,对于学生来说,掌握有理数的加法规则是非常重要的。因此,我将通过一些实际生活中的例子和情境来帮助学生理解和应用有理数的加法运算。
一、有理数的概念
首先,我们需要明确有理数的概念。有理数包括正有理数、负有理数和零,它们可以用分数或小数表示。有理数可以进行四则运算,其中加法是最基础的运算之一。
二、有理数的加法规则
有理数的加法规则可以通过实际生活中的情境来进行解释,例如:
1. 温度的变化:如果一个地方的温度为5摄氏度,另一个地方的温度为-3摄氏度,那么两地温度的总和为5+(-3)=2摄氏度。
2. 银行存款:如果你有100元的存款,然后你从银行取出20元,那么你的存款变为100+(-20)=80元。
通过这些实际生活中的情境,学生可以更好地理解有理数的加法规则,并将其应用于实际问题中。
三、例题演练
为了帮助学生更好地理解和掌握有理数的加法规则,我将通过一些例题演练来进行讲解。
例题1:小明从家里走了200米,然后又返回原地走了-150米。求小明最终走的总距离。
解析:根据有理数的加法规则,我们可以将两段距离的数值相加。所以,200 + (-150) = 50。小明最终走了50米。
例题2:小明的储蓄罐里有200元,他从里面取出了-80元,然后又存入了30元。求小明最终的存款金额。
解析:根据有理数的加法规则,我们可以将两个数的数值相加。所以,200 + (-80) + 30 = 150。小明最终的存款金额为150元。
通过这些例题演练,学生可以更好地理解有理数的加法规则,并且能够通过计算来得到正确的结果。
四、总结
有理数的加法是数学中的基础知识,对于学生来说掌握有理数的加法规则是非常重要的。通过一些实际生活中的例子和情境,我们可以帮助学生更好地理解和应用有理数的加法运算。希望通过今天的讲解,能够帮助学生更好地掌握有理数的加法。
有理数的加法说课稿 篇三
一、教学目标
(一)知识与技能
1、使学生掌握有理数加法法则,并能运用法则进行计算;
2、在有理数加法法则的教学过程中,注意培养学生的运算能力。
(二)过程与方法
1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
(三)情感、态度与价值观
1、认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。
2、创设教学情境,使学生更好地体验教学内容中的情境,理解数学的意义与数学实际应用。
二、教学重点
会用有理数加法法则进行运算。
三、教学难点
异号两数相加的法则。
四、教学方法
探究法、引导发现法
五、教具准备
多媒体课件、导学案
六、教学过程
(一)创设情景,引入新课。
小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把你们认为可能的所有答案说出来。
(二)探究新知
1、大家开始画数轴,以原点为起点,规定向右的方向为正方向,向左的方向为负方向。
(1)若两次都是向右走,很明显,一共向右走了5米。
记作:(+2)+(+3)= +5
(2)若两次都是向左走,很明显,一共向左走了5米。
记作:(—2)+(—3)= —5
(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。
记作:(+2)+(—3)= —1
(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。
记作:(—2)+ (+3)= +1
2、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。我们可以借助数轴来得知两个有理数相加的结果。请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。
1、(—4)+ (—1) 2、 (+5)+(—3) 3、 (—4)+(+7) 4、 (—6)+3
3、通过实
践,我们发现,能借助数轴很方便地得知有理数加法结果。但对于如1700 +(—1800),1、2 +(—5、34)这样的数字在数轴上就不容易表示出来了,怎样才能迅速准确地计算出来呢?
师生讨论、归纳出有理数的加法法则:
①同号两数相加,取相同的符号,并把绝对值相加;
②绝对值不等的异号两数相加,取绝对值较大的加数的符号,并把较大的绝对值减去较小的绝对值;
除此之外,有理数相加,还有其他情况
(1)第一次向左走3米,第二次向右走3米,则小明仍位于出发点。
记作:(—3)+(+3)= 0
(2)第一次向右走3米,第二次向左走3米,则小明仍位于出发点。
记作:(+3)+(—3)= 0
(3)第一次向左(向右)走了3米,第二次在原地不动,则小明位于原来位置的左方(或右方)3米。
记作:(—3)+0 = +3 或(+3)+0 = 0
归纳为:
③互为相反数的两个数相加得0;
④一个数同0相加,仍得这个数。
(三)运用新知
1、例题讲解:(利用多媒体展示)
例1: 计算下列各题:
(1)180 +(—10); (2)(—10)+(—1);
(3)5 +(—5); (4)0+(—2)。
教师引导学生先观察符号特征,再教师示范写出过程,并强调题的类型每一步的理由。
解:(1)180+(—10)(异号型 )
=+(180—10)(取绝对值较大的数的符号,
=170 并用较大的绝对值减去较小的绝对值)
(2)(—10)+(—1) (同号型)
=—(10+1) (取相同的符号,并把绝对值相加)
=—1
对于(3)、(4) 小题,让学生解答。
在讲完例题后,教师引导学生反思刚才做题时的基本思路。教师在学生回答的基础上提炼为三句话:①确定类型、②确定符号、③确定绝对值。
2、练习
(1)(口答)确定下列各题中的符号,并说明理由:
①(+3)+(+6); ② (—6) +(—7)
③ (+12)+(—7) ④ (+5)+(—10)
(2)计算下列各式:
①(—25)+(—7); ②(—13)+5;
③(—23)+ 0; ④ 45 +(—45)。
(3)土星表面的夜间平均温度为—150度,白天比夜间高27度,那么白天的平均温度是多少?
(4)某升降机第一次上升6米,第二次下降7米,第三次又上升5米,此时升降机在初始位置的_____方(填"上"或"下")相距____米。
(四)课时小结:
1、这节课你学到了什么?
2、对于这节课你有什么困惑?
(五)布置作业
课本练习1题、2题。
有理数的加法说课稿 篇四
一、教学内容
《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。
在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
二、设计理念
七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以"问题串"引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。
三、教学目标与重难点
目标:
1、使学生掌握有理数加法法则,并能运用法则进行计算;
2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3、 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
重点:会用有理数加法法则进行运算。
难点:异号两数相加的法则。
四、学情分析
1、学生非常熟悉正数加正数,正数加零的情况。
2、有理数的分类、数轴、绝对值的相关知识已经掌握。
3、学生善于形象思维,思维活跃,能积极参与讨论。
五、教学策略
1、将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;
2、由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;
3、在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。
六、教学流程
1、回顾旧知,启发思维
展示课件上的三个问题,请同学们思考并回答。
(1)有理数是怎么分类的?
(2)有理数的绝对值是怎么定义的?
(3)下列各组数中,哪一个数的绝对值大?
7和4; —7和4; 7和—4; —7和—4
【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。
2、创设情境 引入课题
问题一:两个有理数相加,有多少种不同的情形?
答:正+正,负+负,正+负,正+0,负+0,0+0。
【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。
问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?
请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为—150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)
师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回"研究生"共同研究有理数的加法运算吗?
(出示课题)
【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣。同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。
(二)分析问题探究新知
问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?
学生们各抒己见,总结法则。
1、 同号两数相加,取相同的符号,并把绝对值相加。
2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0、
3、 一个数同0相加,仍得这个数
老师总结口诀:"同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑"、
【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力
(三)运用新知深入体会
例1计算(—3)+(—9)。
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征)。
解:(—3)+(—9)=—12、
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对
解题时,先确定和的符号,后计算和的绝对值。
【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。
(四)延伸拓展敢于挑战
问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?
问题六:小学学过的运算律是否适用于有理数的加法?
【设计意图】由课堂延伸到课外,()不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。
(五)归纳总结感受思想
(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?
(2)本节课你学习到了哪些数学思想方法?
【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。
(六)布置作业
(1)P56 习题1、3。
(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。
【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。
七、设计说明
1、通过"问题串"的设置,激发兴趣,引起学生深层次的思考。
2、通过"互举例子"、"小组竞赛"两个活动,鼓励学生主动参与活动。
3、通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。
4、在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。
有理数的加法说课稿 篇五
尊敬的各位领导、老师:
大家好!
今天我说课的课题是有理数的加法。本节课选自湖南教育出版社出版的数学七年级(上)第一章第四节第一课时的内容。下面我就从教材分析、教法学法、教学程序和教学反思四个方面向大家介绍我对本节课的理解与设计。
教材分析
(一)地位和作用
有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后面学习实数、代数式运算、方程、不等式、函数等知识奠定基础、有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。
就本章而言,有理数的加法是本章的重点。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键在于这一节的学习。
(二)教学目标
1、知识与能力目标:
(1)了解有理数加法的意义。
(2)理解并掌握的有理数加法的法则,并会运用法则进行准确运算,提高学生的运算能力。
2、过程与方法目标:
(1)经历法则探索的过程,培养学生归纳总结知识的能力。
(2)体验初步的算法思想。(转化)
(3)在探索过程中感受数形结合和分类讨论的数学思想。
(4)渗透由特殊到一般的唯物辩证法思想。
3、情感与态度目标:
(1)让学生体会到数学知识来源于生活,服务于生活,培养学生对数学的热爱。
(2)培养学生协作意识,体验成功,树立学习自信心。
(三)教学重点、难点:
重点
:理解和运用有理数的加法法则。
难点
:异号两数相加的法则。
教法与学法
我在本节课主要采用“引导——发现教学法”,并借助多媒体课件来展开教学。学生主要采用“合作探究学习法”来学习本节内容。
教学程序:
我采用的教学模式分为“引——探——结——用”四个环节。
(一)、引出课题(2分钟)
例如,足球比赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。
如果,红队进4个球,失2个球;蓝队进1个球,失1个球。则红队的净胜球数为4+(-2),
蓝队的净胜球数为1+(-1)。
这里用到正数和负数的加法。
那么,怎样计算4+(-2)呢?
此环节大约2分钟。
(二)、探索规律、得出法则。(15分钟)
现规定正能量为正,负能量为负。
(1)若两个好人携带正能量分别为+20、+30,
则相加的结果是( )。
写成算式:(+20)+(+30)=( )
(2)若两个坏人携带负能量分别为—20、—30,
则相加的结果是( )。
写成算式:(—20)+(—30)=( )
这两个算式,运算有什么特点呢?
同号两数相加,好比作同伙人:正数+正数,正能量增大;
负数+负数,负能量增大。
最后概括为①定符号;②把绝对值相加。
(3)若一个好人携带正能量+30一个坏人携带负能量—10。
则两人较量的结果是( ) 赢,还剩( )能量。
写成算式:(+30)+(—10)=( )。
(4)若一个好人携带正能量+20一个坏人携带负能量—40。
则两人较量的结果是( )赢,还剩( )能量。
写成算式:(+20)+(—40)=( )。
这组算式,运算有什么特点呢?
异号两数相加,好比两人在打仗,谁的力量强大,谁就赢。如果正能量大, 符号就定为正;如果负能量大,符号就定为负,又让学生理解两人打仗,彼此力量会彼此抵消,彼此消损。那么赢的一方还剩多少能量呢?故而把绝对值做减法。强调用大的绝对值减去小的绝对值。
最后概括为①定符号;②把绝对值相减。
再看两种特殊情形:
(5)若一个好人携带正能量+30,一个坏人携带负能量—30。则两人较量的结果是( ),还剩( )能量。
写成算式:(—30)+(+30)=( )。
(6)20+0=( ) 0+(—15)=( )
新课程倡导让学生从“要我学”向“我会学”转变,而教师是学生学习的组织者、引导者和合作者。由于教材上利用数轴和绝对值来探究法则过于抽象,不易引起学生的兴趣。借鉴之下,我选用了学生感兴趣的卡通动画人物,激发学生的学习兴趣,营造一种轻松愉快的学习氛围;我让学生来当裁判,学生必须把6次的情况都完成后,才能得到结果,这样每个学生的注意力一直会很集中。若学生有困难,则小组内探讨交流、补充,让学生能逐步引导概括出有理数的加法法则。上述过程,大约20分钟的时间,将突出重点,突破难点。
(三)小结(3分钟)
有理数的加法法则
1、同号两数相加:
取加数的符号,并把绝对值相加。
2、异号两数相加:
取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两个数相加得0。
4、一个数同零相加:仍得这个数
(四)、用
1、加深理解,巩固法则。(5分钟)
(1)填表
(2)思考:在进行有理数加法运算时,应分几步完成?
此题的设计是为了学生更好地理解、掌握有理数加法法则。同时,让学生知道,凡是有理数运算都要首先确定结果的符号。学生独立完成表格后,我将解题步骤,分步板书在黑板上,让学生对解题格式引起重视。
2、变式训练,应用法则。(15分钟)
数学家皮亚杰认为:“不断的训练才能够逐渐的发展出一个合理的数学模型”。练习和科学的重复练习始终是数学学习的有效办法。为了让学生熟练应用法则准确计算,我设计了2个例题、例1是同号两数相加;例2是异号两数相加。这两种最典型的类型,以起到巩固法则和规范格式的'作用。我让学生尝试独立完成,让基础组的学生板演后,并让别的学生找错误,这样充分调动了学生的积极性,活跃了课堂气氛。同时,通过学生纠错的过程,让学生对错误加深记忆,将知识转化为技能。
3、小组闯关,检测目标。(5分钟)
在新课程下,教学的本质是学习活动,学生是否有效的学习,教学目标是否落实到位,检测目标成为一节课的一个重要环节。
我设计了两个闯关小游戏。一个是学生口答抢答,另一个是男生出题女生抢答,反之女生出题男生抢答,通过男女同学竞争中巩固、应用法则。
有理数的加法说课稿 篇六
各位领导、老师:
大家好!
今天我将要为大家讲的课题是有理数的加法,首先,我对本节教材进行一些分析。
本节课选自人民教育出版社出版的〈义务教育课程标准实验教科书〉数学七年级(上)。这一节课是本册书第一章第三节第一课时的内容。下面我就从以下六个方面——教材结构与内容简析、教学目标、教学重点难点及关键、教法、学法、教学过程的设计向大家介绍一下我对本节课的理解与设计。
一、教材结构与内容简析
在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。
2、就第一章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分——有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
3、数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:
(1)渗透由特殊到一般的辩证唯物主义思想
(2)培养学生严谨的思维品质。
二、教学目标
根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征 ,制定如下教学目标:
1、基础知识目标:
(1)理解有理数加法的意义;
(2)理解并掌握有理数加法的法则;
(3)应用有理数加法法则进行准确运算;
(4)渗透数形结合的思想。
2、能力目标是:
(1)培养学生准确运算的能力;
(2)培养学生归纳总结知识的能力;
3、德育目标是:渗透由特殊到一般的辩证唯物主义思想
4、个性品质目标:培养学生严谨的思维品质。
三、教学重点、难点、关键
有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难点是:有理数加法法则的理解。
四、教法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习,不断克服学生学习中的被动情况,使其在教学过程中在掌握知识的同时发展智力、受到教育。
五、学法
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力,而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我都在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
六、教学过程的设计
1、引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。
2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全身心的投入到思考问题中去,让学生亲身参加了探索发现及获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。
3、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。同时针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
4、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。说课对我仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。