三年级数学多位数乘一位数的教案文案【优秀6篇】

时间:2017-03-08 03:43:20
染雾
分享
WORD下载 PDF下载 投诉

三年级数学多位数乘一位数的教案文案 篇一

标题:探索多位数乘一位数的奥秘

引言:

在三年级的数学学习中,学生们已经掌握了基本的乘法概念和技巧,现在我们将进一步学习多位数乘一位数的运算。通过本节课的学习,学生们将会探索多位数乘一位数的奥秘,并能够灵活运用这一技巧解决实际问题。

一、目标:

1. 理解多位数乘一位数的概念;

2. 能够运用竖式计算法进行多位数乘一位数的计算;

3. 能够灵活应用多位数乘一位数解决实际问题。

二、教学重点:

1. 多位数乘一位数的概念;

2. 竖式计算法的运用。

三、教学准备:

1. 教具:黑板、彩色粉笔;

2. 教材:《三年级数学教材》第X单元第X课。

四、教学过程:

1. 导入新知识:

通过回顾上节课学习的内容,复习乘法的基本概念和技巧。提问学生:你们还记得什么是乘法吗?乘法有什么特点?请举例说明。

2. 引入新知识:

介绍多位数乘一位数的概念。通过示例和图表,让学生理解多位数和一位数的概念。例如:342乘以5,可以表示为:342 × 5。

3. 讲解竖式计算法:

教师向学生介绍竖式计算法,并通过具体的例子演示如何进行多位数乘一位数的计算。引导学生理解个位数、十位数和百位数的概念,并学会对齐数字进行计算。

4. 练习与巩固:

让学生进行练习,从简单的例子开始,逐步增加难度。教师要及时给予指导和帮助,确保学生掌握了竖式计算法。

5. 拓展应用:

通过实际问题的应用,让学生灵活运用多位数乘一位数的技巧解决问题。例如:小明有3块钱,他买了5本书,每本书的价格是25元,他还剩下多少钱?

6. 总结与反思:

对本节课的学习进行总结,让学生回答以下问题:你们学会了什么?你们觉得哪个部分最难?有什么需要改进的地方吗?

七、板书设计:

- 多位数乘一位数的概念

- 竖式计算法的运用

八、课后作业:

完成课堂练习册上相关习题。

三年级数学多位数乘一位数的教案文案 篇二

标题:多位数乘一位数的实际应用

引言:

在三年级的数学学习中,学生们已经掌握了多位数乘一位数的基本概念和技巧。本节课将进一步应用这一技巧解决实际问题,让学生们体会到乘法在生活中的实际应用价值。

一、目标:

1. 能够灵活应用多位数乘一位数解决实际问题;

2. 培养学生的逻辑思维和解决问题的能力。

二、教学重点:

实际问题的应用。

三、教学准备:

1. 教具:黑板、彩色粉笔;

2. 教材:《三年级数学教材》第X单元第X课。

四、教学过程:

1. 导入新知识:

通过回顾上节课学习的内容,复习多位数乘一位数的基本概念和竖式计算法。提问学生:你们还记得如何计算多位数乘一位数吗?请举例说明。

2. 引入新知识:

教师提供一些实际问题,让学生应用多位数乘一位数的技巧解决。例如:小明买了5个苹果,每个苹果的重量是342克,他一共买了多少克的苹果?

3. 学生合作解决问题:

让学生自由组队,合作解决老师提供的实际问题。每组选出一位发言人,向全班汇报他们的解决方法和答案。

4. 分享解决方法:

邀请几组学生上台分享他们的解决方法和答案。通过学生之间的交流和讨论,让其他学生了解不同的解决思路,并互相学习。

5. 拓展练习:

让学生自行编写实际问题,并互相交换解答。通过相互提问和解答,加深对多位数乘一位数的理解和应用能力。

6. 总结与反思:

对本节课的学习进行总结,让学生回答以下问题:你们学到了什么?在解决实际问题中,你们遇到了哪些困难?有什么需要改进的地方吗?

七、板书设计:

- 多位数乘一位数的实际应用

八、课后作业:

根据课堂练习,编写一个实际问题并解答。

三年级数学多位数乘一位数的教案文案 篇三

教学目标

通过学生对已学过的除法关系应用题的解答,引导学生自己概括整理出常见的除法数量关系式,掌握并灵活地运用这些常见数量关系式解决实际问题.

通过教学,培养学生分析和解决实际问题的能力,提高学生运用数学术语进行归纳概括的能力,发展抽象思维.

通过学生对一些数量关系的掌握,加深他们对日常各种数量及相互关系的理解,体验探索的乐趣,感受数学的实用性、严谨性和结论的确定性.

教学重点、难点

根据具体情境的实际问题,抽象概括出常见的除法数量关系式,加深学生对日常各种数量及相互关系的理解.

教学过程

铺垫准备.【演示课件“除法应用题和常见的数量关系”】

出示:

根据24×6=144,列两个除法算式.

144÷6=24,144÷24=6

根据230÷5=46,列一个乘法算式和一个除法算式.

46×5=230,230÷46=5

观察以上两组算式,你有什么发现?说说乘法各部分之间存在什么关系?

出示:被乘数×乘数=积

积÷乘数=被乘数

积÷被乘数=乘数

提问:我们学过的乘法数量关系有哪些?

板书:单价×数量=总价 速度×时间=路程

单产量×数量=总产量  工效×时间=工作总量

探索新知.

1.【继续演示课件“除法应用题和常见的数量关系”】

教师结合课件问:动画看完了,你想到了什么?(要想知道带的钱是否够用,可以估算一下,还可以先算出买鼓共需要多少钱?)学生结合课件演示叙述题意.

出示:(1)学校鼓乐队要买8个鼓,每个98元,一共需要多少元?

问:这个问题中存在哪些数量关系?你想怎样列式?

学生回答后板书:单价×数量=总价

98×8=784(元)

解决动画中“钱是否够用”的问题.

2.根据“学校鼓乐队要买8个鼓,每个98元,一共需要多少元?”这个问题,谁能联想出两道除法计算的应用问题来?

学生讨论编题,然后口述题意.

根据学生的回答,出示:

(2)学校鼓乐队要买8个鼓,一共需要784元,每个鼓多少元?

(3)学校鼓乐队买鼓需要784元,每个98元,一共可以买几个?

分别读题,列式解答,订正并板书:

(2)784÷8=98(元) (3)784÷98=8(个)

3.观察三个算式,联系题意,推出数量关系式.

(1)观察98×8=784(元) 784÷8=98(元) 784÷98=8(个)三个算式之间有什么区别和联系,想784、98、8分别代表哪一数量?问:你发现了什么?

(2)学生讨论.“单价、数量、总价”之间除了有乘法关系外,还有什么关系?

学生自己提炼得出:总价÷数量=单价、总价÷单价=数量

4.结合自己的生活经验,举出应用“总价÷数量=单价或总价÷单价=数量”的实际例子.

发散迁移.【继续演示课件“除法应用题和常见的数量关系”】

学生以小组位单位讨论74页“做一做”,得出“速度、时间、路程”之间的除法数量关系式.

问:根据“工效×时间=工作总量”这一乘法数量关系,你想到了什么?

学生推理得出这三个量间的除法数量关系.

全课小结.

1.通过这节课的学习,谈谈你有什么新的收获?还有什么疑问?

2.师带领学生回顾全课内容,从具有乘除法数量关系的三个数量间的紧密联系中体会“事物在一定条件下可以互相转换”的思想.

三年级数学多位数乘一位数的教案文案 篇四

教学目标

(一)使学生在已掌握的“单价×数量=总价”等关系式的基础上推导出另外两个关系式正确理解三个关系式之间的联系.

(二)学会应用关系式解决实际计算问题.

(三)培养学生的观察、思考、分析和概括能力.

教学重点和难点

重点:用乘法求总价,推导出用除法求得另外两个量.

难点:揭示三类应用题的数量关系.

教学过程设计

(一)复习准备

(1)口算:(投影出示)

14×5=         21×3=          13×7=

70÷14=        63÷3=          91÷7=

70÷5=         63÷21=          91÷13=

32×4=         12×6=          15×8=

128÷4=        72÷6=          120÷8=

128÷32=        72÷12=          120÷15=

(2)请同学回忆一下在乘数是两位数乘法中,学过哪些常见的数量关系?

(可以让学生讨论,互相启发,提醒一下,然后请同学回答.学生回答无序,老师要选择有序的板书在黑板上)

生:单价×数量=总价

单产量×数量=总产量

速度×时间=路程

工效×工时=工作总量

师:同学们能牢固掌握学过的数量关系,下面老师出一道常见数量关系的应用题请大家来思考.

(二)学习新课

1.学校鼓乐队买了8个鼓,每个34元,一共用了多少元?(事先写好贴在黑板上)

投影出示讨论题:(几个题都用这个讨论题)

(1)题目中已知哪些量?求什么量?

(2)用什么方法计算?为什么?

(3)说出数量关系式.

通过讨论,根据问题回答.老师把学生说的列式板书在黑板上.

34×8=272(元)

使学生充分认识:34元是单价;8是数量;272元是总价.

单价×数量=总价

下面老师把(1)题,已知和所求改变一下,请看(2)题.(事先写好贴在黑板上)

(2)学校鼓乐队买8个鼓用了272元,每个鼓多少元?

投影出示讨论题:

学生讨论时老师巡视、启发学生充分发表意见,使每个人都参与.

(可以多请几名同学回答,尤其是中、下等同学,要多给他们机会)

生:已知“买了8个鼓”是数量,“用了272元”是总价.求“每个鼓多少元”是单价.也就是:已知总价和数量,求单价.

关系式:总价÷数量=单价

列式:272÷8=34(元)

(老师把它写在黑板上)

请同学按老师说的要求,把这个题目再改编一下,注意听.

如果这道题的总价不变,把问题(单价)改变为条件,把数量改变为问题.

请同学思考片刻,组织一下语言,把这道应用题叙述出来.

(学生回答、老师把事先写好的(3)题贴在黑板上)

(3)学校鼓乐队买鼓用了272元,每个34元,买了几个鼓?

投影出示讨论题:

(根据讨论题回答,请一些平时学习有困难的同学,看他们是否掌握了)

(生:已知总价是272元,单价是34元,求的是数量.)

关系式:总价÷单价=数量

列式:979÷34=8(个)

师:通过上面三个题目,你能说出单价、数量、总价这三个量之间有什么关系吗?

(同学们可以互相说一说)

生:已知单价和数量,可以求出总价,用乘法计算;已知总价和数量,可以求出单价,用除法计算;已知总价和单价,可以求出数量,用除法计算.

总之,单价、数量、总价这三个量,只要知道其中两个量,就可以求出第三个量.

小结  今天我们研究了单价、数量、总价这三量之间的关系,只要知道这三个量中的两个量,就可以求出第三个量.只要记住“单价×数量=总价”就容易想出另外两个关系式:“总价÷数量=单价”“总价÷单价=数量”,这样我们就能很快地解决生活中的有关实际问题.

(三)巩固反馈

请同学利用我们刚学的知识,解决下面的问题.

(1)一辆汽车由胜利村开往县城,用了4小时,平均每小时行35千米,由胜利村到县城的路程是多少千米?

关系式:速度×时间=路程

列式:35×4=140(千米)

(2)胜利村到县城的路程是140千米,一辆汽车平均每小时行35千米.这辆汽车由胜利村到县城要用多少小时?

关系式:路程÷速度=时间

列式:140÷35=4(时)

(3)胜利村到县城的路程是140千米,一辆汽车由胜利村开往县城用了4小时.这辆汽车平均每小时行多少千米?

关系式:路程÷时间=速度

列式:140÷4=35(千米)

(订正时,老师板书)

下面请同学打开书第75页,练习十六第1题.谁知道每题括号里绿颜色的字是什么意思?

学生回答后,老师要求学生请在书上填写.(订正时老师板书)

(1)单产量×数量=总产量

(2)总产量÷数量=单产量

(3)总产量÷单产量=数量

下面我们再来看一道题.(出示)

(1)一台织袜机每小时织32双儿童袜,8小时生产多少双?

提出问题再解答,并写出数量关系式.

读题并补充问题.老师填在黑板上.

关系式:工效×工时=工作总量

列式:32×8=256(双)

(2)把上题改编成求时间的应用题.

(同桌两个同学互相编,然后把关系式,列式计算写在自己的作业本上)

一台织

袜机每小时织32双儿童袜,计划织256双,需要几小时?

关系式:工作总量÷工效=工时

列式: 256÷32=8(时)

(3)把上题改编成求工效的应用题.

(要求自己独立思考,编后,把关系式,列式计算写在作业本上,看谁最快)

一台织袜机8小时织儿童袜256双,平均每小时织儿童袜多少双?

关系式:工作总量÷工时=工效

列式:256÷8=32(双)

小结  请大家回忆一下,我们今天学习了哪些内容?

学习了几种常见的数量关系:单价、数量、总价的关系;速度、时间、路程的关系;单产量、数量、总产量的关系;工效、工时、工作总量的关系.今后可以应用这些数量之间的关系解决一些乘法、除法应用题.

作业:看书第73页.

小资料

除法应用题的数量关系,都可以归结为:c÷a=b或c÷b=a(a,b都不等于0).

主要有两种情况:一是把数c平均分成b份,也就是求相同的加数a.二是求数c里面含有多少个a,也就是求相同加数a的个数b.至于求一个数c是另一个数a的多少倍,实际上也是求c里含有多少个a;已知一个数的b倍是c,求这个数,实际上就是把c平均分成b份,求这样的一份是多少

三年级数学多位数乘一位数的教案文案 篇五

【教学目标】

1、结合具体情境,通过观察、操作等活动体验面积的含义,初步学会比较物体表面和封闭图形面积的大小。2、通过比较两个图形面积大小的过程,让学生体会解决问题策略的多样性,培养学生动手操作的能力,同时发展学生的空间观念。3、创设有目的的活动,让学生经历知识形成的过程,培养学生主动探索与团结协作的意识和能力,使学生体会数学与生活的密切联系,激发学生的学习兴趣。

【教学准备】

1、教师准备:多媒体课件、学具袋(正方形与长方形每生各一个,剪刀、固体胶、小纸片、硬币等)

2、学生准备:学具袋(正方形与长方形每生各一个,剪刀、固体胶、小纸片、硬币等)

【教学重点】

理解面积的含义,体验比较策略的多样性。

【教学难点】

理解面积含义,比较两个图形面积的大小。

【教学过程】

一、 谈话引入:

1、手掌面及数学书封面引出物体表面大小就是它们的面积。(板书:物体表面的大小——面积)

2、以淘气想加入到同学们当中来,出示课件引出:封闭图形的大小就是它们的面积。(板书:封闭图形)

二、 初探面积的含义。

1、 感知:

① 寻找身边物体的面积,学生举手回答。

② 比较物体面积的大小,同桌互说并举手回答。

2、学生活动:比较长方形和正方形的面积大小

① 教师出示长方形与正方形。学生猜测图形面积的大小。

② 学生动手操作,利用学具袋中的学具想出多种方法比较两个图形的大小。师巡视指导。

③ 学生演示不同方法并由学生选择测量面积比较准确的方法。

④ 师引出数格子的方法。

三、 应用。

1、(课件出示)用数格子的方法比较两个图形面积的大小。生观察后举手回答。

2、出示两个正方形,学生讨论并判断是否可以用数格子的方法。让学生知道比较时格子的大小要一样。

3、书本40页画一画。

四、 拓展(小小设计师)

在方格纸中小组合作完成一个图形贴画。

1、由智慧老人送礼物引出。

2、教师提出活动具体要求。

3、投影仪展示学生部分作品,并比较图形面积大小。

五、 总结

在今天的学习中,你都知道了些什么?

最新三年级数学多位数乘一位数的教案文

案5

教学目标:

1、结合具体实例和涂色活动,认识图形面积的含义。

2、经历比较两个图形面积大小的过程,体验比较策略的多样性,学生在活动中懂得解决问题的方法不是的。

3、让学生在观察、比较、操作的实践活动中发展学生的空间观念。

教学重点:结合具体实例和涂色活动,认识图形面积的含义。

教学难点:经历比较两个图形面积大小的过程,体验比较策略的多样性。

教学流程:

一、 周长和面积对比中感受面积的含义。

1、   请同学们拿出课前准备的一元和一角硬币,请同学们沿着硬币的轮廓画一圈,想想画出的是什么图形呢?(圆形)请同学们来画画吧!画的时候要注意什么呢?(提示一定要沿着硬币的轮廓的边缘来画)比一比,看谁画得好!

在这里感觉我设计的这个环节,学生缺少参与其中的热情,我这个设计还要思考,要让学生充满热情的去画,在教师的引领下,产生积极的数学思考。

2、   学生动手画

3、   如果我们画的两个圆是两只小蚂蚁的运动场,你能说说你的发现吗?(这个情境我没有在课的一开始设置。)

A:大圆的周长长一些,小蚂蚁跑的路程多;小圆的周长短一些小蚂蚁跑的路程少些。

B:一个圆(面积)大些,一个圆(面积)小些

…………

这些答案都有可能,因为学生上学期学习周长的时候,描过树叶的周长,所以学生说周长的可能性多一些,关于面积能提到我就顺势让学生涂面积,不提到,我就让学生帮助小蚂蚁铺草坪涂颜色。

4、   下面我们用彩笔涂上绿色,帮助小蚂蚁把运动场铺上草坪。

A:涂完后,能从数学的角度去说说涂的感受吗?

B:哪个涂得快些,哪个涂得慢些?为什么?

A、B两个问题我到底怎么提好呢,还要结合课堂的生成,也想听听大家的意见。问题A给学生的思考空间更广泛一些。问题 B过于直白。

(大圆面大涂得慢,小圆面小涂得快些。这里学生不一定能一下子说出面积这个词语。)

5、教师引导学生总结:(就象刚才的两个圆形这样的)平面图形的大小叫做他们的面积

6、我们来摸摸课桌的表面,说说你的感觉,这个桌面的大小叫做课桌的面积。

看看,说说我们的生活中还有哪些面,你有什么感受?

引导学生总结:桌面、课本封面及其它物体表面的大小,就是它们的面积。

7、揭示课题:

同学们在摸和涂色中知道了什么是面积(板课题:面积)。能否用自己的话说一说什么是面积吗?

问题:这里我的初备是和一笑老师的的想法是相同的,先出示部分概念,这里我没想好怎么揭示这个概念,呈现这样两种形式,还想听听网友的意见。

8、揭示概念:

教师板书:物体表面的或平面图形的大小叫做他们的面积

导入中,我采用的是比较简单的形式,这个设计的灵感来源于自己的曾经的教学和前几天房间里的一个老师的困惑-----学生对周长和面积的概念区分的不好。所以我在对概念的引入从周长入手。让学生在具体的操作中感受,周长是是表示长度的。而在涂面的时候,感受面积的概念是和长度的含义是不同的。学生不一定能表述的很清楚。但是在这画和涂的过程中,学生的内心已经能充分感受他们的区别。学生在涂平面图形和摸实物的过程中自主建构了面积的概念。

这里面对于周长和面积的区别我在教学中并没有强调的很多。主要是让学生经历画和涂的对比中去感受周长和面积的概念。

一笑的教学设计我看了。她是从生活中物体的面积导入。更直接一些。我最欣赏一笑老师的二次设计中,给文具盒和橡皮做束身衣,这个部分,充分体现让学生感受物体表面积的大小。我的设计虽然是从平面图形引入,但是这个平面图形也是从生活中的具体事物抽象出来的图形,我想对于学生来说,可能并不是完全的抽象的。

二、比较面积大小,体验比较策略的多样性。

1、说说教室里一组物体的面,并比较一下他们面积的大小。

2、有些图形我们一目了然就能比较出它的大小,但是有些图形我们就不能。出示书上39页比一比

(1)提问:猜一猜,哪个图形面积大些?

让学生先进行直观估测,和后面的验证结合起来,培养学生的数感。

(2)找验证策略:

A、到底哪个结论是正确的?能不能结合学具袋里的学具想出办法来验证?

B、个人尝试(让学生把学具袋里的学具都可以尝试一下,可以用不同的方法验证)

C、小组同学交流,相互说一说。归纳小组的办法。(这里面的交流重在体现解决问题策略的多样性。可以相互借鉴,相互学习)

D、小组展示验证,全班汇报,并说明理由或想法。

至少可以呈现这样四种方法:折叠、用圆形图片摆、用小方块摆、用透明胶片的格子比较

引导学生学会欣赏、反思和评价

(3)小结:比较两个图形面积的大小时。可以采用不同的方法,但验证过程必须科学、准确。

三、巩固练习

(1)第一个层次的练习我安排了41页的1、2题。让学生及时巩固新知并渗透数格子比大小是比较图形面积大小的基本方法。其中第二题主要是培养学生的直观估测能力,发展空间知觉。

(2)第二个层次的练习我安排了40页的画一画。这里我改了一下呈现顺序。感觉这个题目更有难度一些,接着做41页的3题。3题中的第二个图形教师要让学生充分的想办法,把两个三角行就可以合成一个小正方形。如果这个地方突破了,后面的4题就不成问题了。

(3)第三层次的练习41页的4题。是让学生进一步巩固面积的含义,同时拓宽学生的思维。

四、全课总结:学习了这节课,你有什么收获?你还想知道哪些关于面积的知识?

全课的结束,我向学生抛出了一个问题,那就是你还想知道哪些关于面积的问题。(我就在想,学生会不会提出,我们学校操场的面积那么大,我们怎么能知道他是多大呢,课桌的面积的大小到底是多大呢?)

三年级数学多位数乘一位数的教案文案 篇六

三年级数学多位数乘一位数的教案文案【优秀6篇】

手机扫码分享

Top